References
- Abbasi M.K., Khizar A., 2012. Microbial biomass carbon and nitrogen transformations in a loam soil amended with organic-inorganic N sources and their effect on growth and N-up-take in maize. Ecological Engineering, 39: 123–132,
https://doi.org/10.1016/j.ecoleng.2011.12.027 . - Ai C., Liang G.Q., Sun J., Wang X.B., He P., Zhou W., 2013. Different roles of rhizosphere effect and long-term fertilization in the activity and community structure of ammonia oxidizers in a calcareous fluvo-aquic soil. Soil Biology & Biochemistry, 57: 30–42,
https://doi.org/10.1016/j.soil-bio.2012.08.003 . - Aibara I., Miwa K., 2014. Strategies for optimization of mineral nutrient transport in plants: multilevel regulation of nutrient-dependent dynamics of root architecture and transporter activity. Plant and Cell Physiology, 55(12): 2027–2036,
https://doi.org/10.1093/pcp/pcu156 . - Alori E.T., Glick B.R., Babalola O.O., 2017. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Frontiers in Microbiology, 8: 971;
https://doi.org/10.3389/fmicb.2017.00971 . - Ardakani M.R., Mazaheri D., Mafakheri S., Moghaddam A., 2011. Absorption efficiency of N, P, K through triple inoculation of wheat (Triticum aestivum L.) by Azospirillum brasilense, Streptomyces sp., Glomus intraradices and manure application. Physiology and Molecular Biology of Plants, 17: 181–192,
https://doi.org/10.1007/s12298-011-0065-7 . - Awad N.M., Abd El-Kader A.A., Attia M.K.A.A., & Alva A.K., 2011. Effects of nitrogen fertilization and soil inoculation of sulfur-oxidizing or nitrogen-fixing bacteria on onion plant growth and yield. International Journal of Agronomy, (1):316856,
https://doi.org/10.1155/2011/316856 . - Badr M.A., Shafei A.M., Sharaf El-Deen S.H., 2006. The dissolution of K and P-bearing minerals by silicate dissolving bacteria and their effect on sorghum growth. Research Journal of Agriculture and Biological Sciences, 2: 5–11.
- Beltran-Medina I., Romero-Perdomo F., Molano-Chavez L. et al., 2023. Inoculation of phosphate-solubilizing bacteria improves soil phosphorus mobilization and maize productivity. Nutrient Cycling in Agroecosystems, 126: 21–34,
https://doi.org/10.1007/s10705-023-10268-y . - Bhattacharya S., Bachani P., Jain D., Patidar S. K., Mishra S., 2016. Extraction of potassium from K-feldspar through potassium solubilization in the halophilic Acinetobacter soli (MTCC 5918) isolated from the experimental salt farm. International Journal of Mineral Processing, 152: 53–57,
https://doi.org/10.1016/j.minpro.2016.05.003 . - Bin L., Bin W., Mu P., Liu C., Teng H. H., 2010. Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigatus. Geochimica et Cosmochimica Acta, 72: 87–98,
https://doi.org/10.1016/j.gca.2007.10.005 . - Biofertilizers Market Size, Share, and Trends 2025 to 2034.
https://www.precedenceresearch.com/biofertilizers-market . - Chaudhary S., Dhanker R., Kumar R., Goyal S., 2022. Importance of legumes and role of Sulphur oxidizing bacteria for their production: a review. Legume Research-An International Journal, 45(3): 275–284.
- Chaudhary S., Sindhu S. S., Dhanker R., Kumari A., 2023. Microbes-mediated sulphur cycling in soil: Impact on soil fertility, crop production and environmental sustainability. Microbiological Research, 271: 127340,
https://doi.org/10.1016/j.micres.2023.127340 . - Chen J.W., Li J., Yan J.J., Li H.X., Zhou X., 2014. Abundance and community composition of ammonia-oxidizing bacteria and archaea under different regeneration scenarios in Chinese Loess Plateau. Soil Science, 179: 369–375,
https://doi.org/10.1097/SS.0000000000000080 . - Chen Y.P., Rekha P.D., Arun A.B., Shen F.T., Lai W.A., Young C.C., 2006. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Applied Soil Ecology, 34(1): 33–41,
https://doi.org/10.1016/j.apsoil.2005.12.002 . - Compant S., Clément C., & Sessitsch A., 2012. Plant growth-promoting bacteria in therhizome- and endosphere of plants: Their role, colonization, mechanisms involved andprospects for utilization. Soil Biology and Biochemistry, 42(5): 669–678,
https://doi.org/10.1016/j.soilbio.2009.11.024 . - da Cunha E.T., Pedrolo A.M., Bueno J.C.F. et al., 2022. Inoculation of Herbaspirillum seropedicae strain SmR1 increases biomass in maize roots DKB 390 variety in the early stages of plant development. Archives of Microbiology, 204: 373,
https://doi.org/10.1007/s00203-022-02986-8 . - da Silva L.I., Pereira M.C., de Carvalho A.M.X., Buttrós V.H., Pasqual M., Dória J., 2023. Phosphorus-Solubilizing Microorganisms: A Key to Sustainable Agriculture. Agriculture, 13(2): 1–33,
https://doi.org/10.3390/agriculture13020462 . - Daniel A.I., Fadaka A.O., Gokul A., Bakare O.O., Aina O., Fisher S., Klein A., 2022. Biofertilizer: the future of food security and food safety. Microorganisms, 10(6): 1220,
https://doi.org/10.3390/microorganisms10061220 . - Etesami H., Emami S., Alikhani H.A., 2017. Potassium solubilizing bacteria (KSB): Mechanisms, promotion of plant growth, and future prospects A review. Journal of Soil Science and Plant Nutrition, 17(4): 897–911,
https://doi.org/10.4067/S0718-95162017000400005 . - FAO, 2020.
https://www.fao.org/sustainability/news/detail/en/c/1274219/ (accessed on 14 November 2024).FAO 2020https://www.fao.org/sustainability/news/detail/en/c/1274219/ (accessed on 14 November 2024) - FAOSTAT, 2024.
https://www.fao.org/faostat/en/#data/RFN (accessed on 14 November 2024). - Fibach-Paldi S., Burdman Y., Okon Y., 2011. Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillum brasilense FEMS Microbiology Letters, 326: 99–108,
https://doi.org/10.1111/j.1574-6968.2011.02407.x . - Fierer N., Lauber C.L., Ramirez K.S., Zaneveld J., Bradford M.A., Knight R., 2012. Comparative metagenomic, phylo-genetic and physiological analyses of soil microbial communities across nitrogen gradients. International Society for Microbial Ecology, 6: 1007–1017,
https://doi.org/10.1038/ismej.2011.159 . - Fukami J., Nogueira M. A., Araujo R. S., Hungria M., 2016. Accessing inoculation methods of maize and wheat with Azospirillum brasilense. AMB Express 6: 3–16,
https://doi.org/10.1186/s13568-015-0171-y . - Gallon J. R., 2001. N2 fixation in phototrophs: adaptation to a specialized way of life. Plant and Soil, 230: 39–48,
https://doi.org/10.1023/A:1004640219659 . - Gao H., Yang D., Yang L., Han S., Liu G., Tang L., et al., 2023. Co-inoculation with Sinorhizobium meliloti and Enterobacter ludwigii improves the yield, nodulation, and quality of alfalfa (Medicago sativa L.) under saline-alkali environments. Industrial Crops and Products, 199: 116818,
https://doi.org/10.1016/j.indcrop.2023.116818 . - Gaur R., Shani N., Kawaljeet Johri B. N., Rossi P., Aragno M., 2004. Diacetylphloroglucinol-producing pseudomonads do not influence AM fungi in wheat rhizosphere. Current Science, 86(3): 453–457.
- Gautam A., Sekaran U., Guzman J., Kovács P., Hernandez J. L. G., Kumar S., 2020. Responses of soil microbial community structure and enzymatic activities to long-term application of mineral fertilizer and beef manure. Environmental and Sustainability Indicators, 8: 100073,
https://doi.org/10.1016/j.indic.2020.100073 . - Ghosh S., Mondal S., Banerjee S., Mukherjee A., Bhattacharyya P., 2023. Temporal dynamics of potassium release from waste mica as influenced by potassium mobilizing bacteria. Journal of Pure and Applied Microbiology, 17(1): 273–288,
https://doi.org/10.22207/JPAM.17.1.17 - Glick B.R. 2015. Beneficial Plant-Bacterial Interactions. Springer, Berlin/Heidelberg, Germany,
https://doi.org/10.1007/978-3-319-13921-0 . - Grzyb A., Wolna-Maruwka A., Niewiadomska A., 2021. The significance of microbial transformation of nitrogen compounds in the light of integrated crop management. Agronomy, 11(7):1415,
https://doi.org/10.3390/agronomy11071415 . - Gu Y., Wang J., Cai W., Li G., Mei Y., Yang S., 2021. Different amounts of nitrogen fertilizer applications alter the bacterial diversity and community structure in the rhizosphere soil of sugarcane. Frontiers in Microbiology, 12: 721441,
https://doi.org/10.3389/fmicb.2021.721441 . - Ibrahim M., Iqbal M., Tang Y.T., Khan S., Guan D.X., Li G., 2022. Phosphorus mobilization in plant–soil environments and inspired strategies for managing phosphorus: A review. Agronomy, 12(10): 2539,
https://doi.org/10.3390/agronomy12102539 . - Islam F., Yasmeen T., Ali Q., Ali S., Arif M. S., Hussain S., & Rizvi H., 2016. Plant growth promoting rhizobacteria: challenges and opportunities for agricultural sustainability. Frontiers in Microbiology, 7, 1472.
- James E.K., 2000. Nitrogen fixation in endophytic and associative symbiosis. Field Crops Research, 65(2–3): 197–209,
https://doi.org/10.1016/S0378-4290(99)00087-8 . - Jini D., Ganga V.S., Greeshma M.B., Sivashankar R., Thirunavukkarasu A., 2023. Sustainable agricultural practices using potassium-solubilizing microorganisms (KSMs) in coastal regions: a critical review on the challenges and opportunities. Environment, Development and Sustainability, 26(6): 13641–13664,
https://doi.org/10.1007/s10668-023-03199-9 . - Johnson R., Vishwakarma K., Hossen MdS., Kumar V., Hasanuzzaman M., 2022. Potassium in plants: growth regulation, signaling, and environmental stress tolerance. Plant Physiology and Biochemistry, 172: 56–69,
https://doi.org/10.1016/j.plaphy.2022.01.001 . - Kalayu G., 2019. Phosphate solubilizing microorganisms: promising approach as biofertilizers. International Journal of Agronomy, 1: 4917256,
https://doi.org/10.1155/2019/4917256 . - Khan A.A., Jilani G., Akhtar M.S., Naqvi S.S., Rasheed M., 2009. Phosphorus Solubilizing Bacteria: occurrence, mechanisms and their role in crop production. Journal of Agricultural and Biological Sciences, 1: 48–58.
- Kirkby E., 2012. Introduction, Definition and Classification of Nutrients. In: Marschner P., (Ed.) Marschner’s Mineral Nutrition of Higher Plants, 3rd edn. San Diego Academic Press ISBN : 978-0-12-384905-2.
- Kour D., Rana K.L., Yadav A.N., Yadav N., Kumar M., Kumar V., et al., 2020. Microbial biofertilizers: Bioresources and eco-friendly technologies for agricultural and environmental sustainability. Biocatalysis and Agricultural Biotechnology, 23: 101487,
https://doi.org/10.1016/j.bcab.2019.101487 . - Koźmińska A., Hassan M.A., Halecki W., Kruszyna C., Hanus-Fajerska E., 2024. Beneficial Microorganisms: Sulfur-Oxidizing Bacteria Modulate Salt and Drought Stress Responses in the Halophyte Plantago coronopus L. Sustainability 16(24): 2071–1050,
https://doi.org/10.3390/su162410866 . - Kramer J., Özkaya Ö., Kümmerli R., 2020. Bacterial siderophores in community and host interactions. Nature Reviews Microbiology, 18(3): 152–163,
https://doi.org/10.1038/s41579-019-0284-4 . - Krasilnikov P., Taboada M. A., 2022. Fertilizer Use, Soil Health and Agricultural Sustainability. Agriculture, 12(4): 462,
https://doi.org/10.3390/agriculture12040462 . - Kroh G.E., Pilon M., 2020. Regulation of iron homeostasis and use in chloroplasts. International Journal of Molecular Sciences, 21(9): 3395,
https://doi.org/10.3390/ijms21093395 . - Król M., 2006. Azospirillum – asocjacyjne bakterie wiążące azot. In: Monografie i rozprawy naukowe, IUNG-PIB, Puławy, 15: 45–55, 66–74.
- Kumar S., Sindhu S.S., Kumar R., 2021. Biofertilizers: An eco-friendly technology for nutrient recycling and environmental sustainability. Current Research in Microbial Sciences, 100094,
https://doi.org/10.1016/j.crmicr.2021.100094 . - Lalitha S., 2017. Plant growth-promoting microbes: a boon for sustainable agriculture. In: Sustainable Agriculture towards Food Security; (Ed.) Dhanarajan A., Springer Singapore, Singapore, pp. 125–158,
https://doi.org/10.1007/978-981-10-6647-4_8 . - Lenart A., 2012. Occurrence, characteristics, and genetic diversity of Azotobacter chroococcum in various soils of Southern Poland. Polish Journal of Environmental Studies, 21(2): 415–424.
- Luna M.F., Galar M.L., Aprea J., Molinari M.L., Boiardi J. L., 2010. Colonization of sorghum and wheat by seed inoculation with Gluconacetobacter diazotrophicus. Biotechnology Letters, 32: 1071–1076,
https://doi.org/10.1007/s10529-010-0256-2 . - Łyszcz M., Gałązka A., 2016. Proces biologicznego wiązania azotu atmosferycznego. In: Studia i Raporty IUNG-PIB – Siedliskowe i agrotechniczne uwarunkowania produkcji roślinnej w Polsce; (Ed.) Podleśny J., 49(3), ISBN 978 83 7562 234 8, Puławy, Dział Upowszechniania i Wydawnictw IUNG - PIB w Puławach, pp. 59–70.
- Madhaiyan M., dhya T.K., 2014. Application of microbe-based inoculants in sustainable rice production to reduce environmental pollution and improve grain yield and soil fertility. Environmental Microbiology Reports, 6(5): 448–458.
- Mander C., Wakelin S., Young S., Condron L., O’Callaghan M., 2012. Incidence and diversity of phosphate-solubilising bacteria are linked to phosphorus status in grassland soils. Soil Biology and Biochemistry, 44: 93–101,
https://doi.org/10.1016/j.soilbio.2011.09.009 . - Mazahar S., Umar S., 2022. Soil potassium availability and role of microorganisms in influencing potassium availability to plants. In: Role of potassium in abiotic stress; (Eds) Iqbal N., Umar S., Springer, Singapore.
- Mishra P.K., Joshi P.I.Y.U.S.H., Suyal P.R.E.E.T.I., Bisht J. K., Bhatt J.C., 2014. Potential of phosphate solubilising microorganisms in crop production. Bioresources for Sustainable Plant Nutrient Management, 8: 201–212.
- Mishra P., Dash D., 2014. Rejuvenation of biofertilizer for sustainable agriculture and economic development. Consilience, (11): 41–61.
- Mitter E.K., Tosi M., Obregón D., Dunfield K.E., Germida J.J., 2021. Rethinking crop nutrition in times of modern microbiology: innovative biofertilizer technologies. Frontiers in Sustainable Food Systems. 5: 606815,
https://doi.org/10.3389/fsufs.2021.606815 . - Montero-Palmero B., Lucas J.A., Montalbán B., García-Villaraco A., Gutierrez-Mañero J., Ramos-Solano B., 2024. Iron Deficiency in Tomatoes Reversed by Pseudomonas Strains: A Synergistic Role of Siderophores and Plant Gene Activation. Plants, 13(24): 3585,
https://doi.org/10.3390/plants13243585 . - Moraditochaee M., Azarpour E., Bozorgi H.R., 2014. Study effects of bio-fertilizers, nitrogen fertilizer and farmyard manure on yield and physiochemical properties of soil in lentil farming. International Journal of Biosciences, 4: 41–48.
- OECD Glossary of Statistical Terms, 2008.
https://stats.oecd.org/glossary/detail.asp?ID=947 (accessed on 14 November 2024). - Olaniyan F.T., Alori E.T., Adekiya A.O., Ayorinde B.B., Daramola F.Y., Osemwegie O.O., Babalol O.O., 2022. The use of soil microbial potassium solubilizers in potassium nutrient availability in soil and its dynamics. Annals of Microbiology, 72(1): 45,
https://doi.org/10.1186/s13213-022-01701-8 . - Pahalvi H. N., Rafiya L., Rashid S., Nisar B., Kamili A. N., 2021. Chemical Fertilizers and Their Impact on Soil Health. In: Dar G. H., Bhat R. A., Mehmood M.A., Hakeem K. R. (Eds) Microbiota and Biofertilizers, Vol 2. Springer, Cham.
https://doi.org/10.1007/978-3-030-61010-4_1 . - Priya A., Adhikary S., 2020. Biofertilizers Towards Sustainable Agriculture and Environment Development. AGRICULTURE & FOOD: e-NEWSLETTER.
- Rai P.K., Rai A., Sharma N.K., Singh T., Kumar Y., 2023. Limitations of biofertilizers and their revitalization through nanotechnology. Journal of Cleaner Production, 418: 138194,
https://doi.org/10.1016/j.jclepro.2023.138194 . - Rajani G., Latha P.C., Sundaram R.M., Phule A.S., Prasad Babu K.V., Barbadikar K.M., Prasad Babu M.B.B., Mandal P.K,. Surekha Rani H., 2023. Effect of Plant Growth Promoting Endophytic Bacteria Gluconacetobacter diazotrophicus, on Germination Attributes and Seedling Growth of Rice Varieties under In vitro. International Journal of Plant and Soil Science, 35(20): 62–71.
https://doi.org/10.9734/IJPSS/2023/v35i203786 . - Rawat P., Das S., Shankhdhar D., Shankhdhar S.C., 2021. Phosphate-Solubilizing Microorganisms: Mechanism and Their Role in Phosphate Solubilization and Uptake. Journal of Soil Science and Plant Nutrition, 21: 49–68,
https://doi.org/10.3390/biology10020158 . - Ritika B., Utpal D., 2014. Biofertilizer, a way towards organic agriculture: a review. African Journal of Microbiology Research, 8: 2332–2343,
https://doi.org/10.5897/AJMR2013.6374 . - Romero-Perdomo F., Abril J., Camelo M., Moreno-Galván A., Pastrana I., Rojas-Tapias D., Bonilla R. 2017. Azotobacter chroococcum as a potentially useful bacterial biofertilizer for cotton (Gossypium hirsutum): Effect in reducing N fertilization. Revista Argentina de Microbiologia, 49(4):377–383,
https://doi.org/10.1016/j.ram.2017.04.006 . - Rout G. R., Sahoo S., 2015. Role of iron in plant growth and metabolism. Reviews in Agricultural Science, 3: 1–24,
https://doi.org/10.7831/ras.3.1 . - Santini G., Rodolfi L., Biondi N., Sampietro G., Tredici M.R., 2022. Effects of cyanobacterial-based biostimulants on plant growth and development: a case study on basil (Ocimum basilicum L.). Journal of Applied Phycology, 34(4): 2063–2073,
https://doi.org/10.1007/s10811-022-02781-4 . - Sattar A., Naveed M., Ali M., Zahir Z.A., Nadeem S.M., Yaseen M., Meena H.N., 2019. Perspectives of potassium solubilizing microbes in sustainable food production system: A review. Applied Soil Ecology, 133: 146–159,
https://doi.org/10.1016/j.apsoil.2018.09.012 . - Seshachala U., Tallapragada P., 2012. Phosphate solubilizers from the rhizosphere of Piper nigrum L. in Karnataka, India. Chilean Journal of Agricultural Research, 72: 397–403,
https://doi.org/10.4067/S0718-58392012000300014 . - Sharma R., Sindhu S.S. Glick B.R., 2024. Potassium Solubilizing Microorganisms as Potential Biofertilizer: A Sustainable Climate-Resilient Approach to Improve Soil Fertility and Crop Production in Agriculture. Journal of Plant Growth Regulation, 43: 2503–2535 (2024).
https://doi.org/10.1007/s00344-024-11297-9 . - Shrivastava M., Srivastava P.C., D’Souza S.F., 2018. Phosphate-Solubilizing Microbes: Diversity and Phosphates Solubilization Mechanism. In Meena V., (Ed.), Rhizospheric Microbes in Soil. Springer, Singapore, pp. 137–165.
- Siebielec S., Kozieł M., Woźniak M., Siebielec G., 2021. Mikroorganizmy solubilizujące fosforany – znaczenie w rolnictwie i remediacji. In: Monografie i rozprawy naukowe IUNG-PIB; Podleśny J., Dział Upowszechniania i Wydawnictw IUNG - PIB w Puławach, 63, ISBN 978-83-7562-360-4, pp. 7–85.
- Singh S.K., Wu X., Shao C., Zhang H., 2022. Microbial enhancement of plant nutrient acquisition. Stress Biology, 2(1), 3,
https://doi.org/10.1007/s44154-021-00027-w . - Soumare A., Sarr D., Diedhiou A.G., 2022. Potassium sources, microorganisms, and plant nutrition – challenges and future research directions: a review. Pedosphere, 33(1): 105–115,
https://doi.org/10.1016/j.pedsph.2022.06.025 . - Sparks D.L., Huang P.M., 1985. Physical chemistry of soil potassium. In: Potassium in agriculture; (Ed.) Munson R.D., ASA CSSA and SSSA, Madison, pp. 201–265.
- Sultana S., Alam S., Karim M.M., 2021. Screening of Siderophore-Producing Salt-Tolerant Rhizobacteria Suitable for Supporting Plant Growth in Saline Soils with Iron Limitation. Journal of Agriculture and Food Research, 4:100150,
https://doi.org/10.1016/j.jafr.2021.100150 . - Sumbul A., Ansari R.A., Rizvi R., Mahmood I., 2020. Azotobacter: A potential bio-fertilizer for soil and plant health management. Saudi Journal of Biological Sciences, 27(12): 3634–3640,
https://doi.org/10.1016/j.sjbs.2020.08.004 . - Sun F., Ou Q., Wang N., Xuan Guo Z., Ou Y., Li N., Peng C., 2020. Isolation and identification of potassium-solubilizing bacteria from Mikania micrantha rhizospheric soil and their effect on M. micrantha plants. Global Ecology and Conservation, 23, e01141,
https://doi.org/10.1016/j.gecco.2020.e01141 . - Sun R., Zhang P., Riggins C.R., Zabaloy M.C., Rodríguez-Zas S., Villamil M.B., 2019. Long-term N fertilization decreased diversity and altered the composition of soil bacterial and archaeal communities. Agronomy, 9:574,
https://doi.org/10.3390/agronomy9100574 . - Thomas L., Singh I., 2019. Microbial Biofertilizers: Types and Applications. In: Biofertilizers for Sustainable Agriculture and Environment; (Eds.) Giri B., Prasad R., Wu Q. S., Varma A.; Soil Biology, vol 55. Springer, Cham,
https://doi.org/10.1007/978-3-030-18933-4_1 . - Timofeeva A., Galyamova M., Sedykh S., 2022a. Prospects for using phosphate-solubilizing microorganisms as natural fertilizers in agriculture. Plants, 11(16): 2119,
https://doi.org/10.3390/plants11162119 . - Timofeeva A.M., Galyamova M.R., Sedykh S.E. 2022b. Bacterial siderophores: classification, biosynthesis, perspectives of use in agriculture. Plants, 11(22): 3065,
https://doi.org/10.3390/plants11223065 . - Uchida R., 2000. Essential nutrients for plant growth: nutrient functions and deficiency symptoms. Plant nutrient management in Hawaii’s Soils, 4: 31–55.
- Wang C., Liu D., Bai E., 2018. Decreasing soil microbial diversity is associated with decreasing microbial biomass under nitrogen addition. Soil Biology & Biochemistry, 120: 126–133,
https://doi.org/10.1016/j.soilbio.2018.02.003 . - Wang C., Pan G., Lu X., Qi W., 2023. Phosphorus solubilizing microorganisms: potential promoters of agricultural and environmental engineering. Frontiers in Bioengineering and Biotechnology, 11: 1181078,
https://doi.org/10.3389/fbioe.2023.1181078 . - Wang R., Peng B., Huang K., 2015. The research progress of CO2 sequestration by algal bio-fertilizer in China. Journal of CO2 Utilization, 11: 67–70,
https://doi.org/10.1016/j.jcou.2015.01.007 . - Wang Z., Zhang H., Liu L., Li S., Xie J., Xue X., Jiang Y., 2022. Screening of phosphate-solubilizing bacteria and their abilities of phosphorus solubilization and wheat growth promotion. BMC Microbiology, 22(1): 296,
https://doi.org/10.1186/s12866-022-02715-7 . - Wang Q., Xiong D., Zhao P., Yu X., Tu B., Wang G., 2011. Effect of applying an arsenic-resistant and plant growth-promoting rhizobacterium to enhance soil arsenic phytoremediation by Populus deltoides LH05–17. Journal of Applied Microbiology, 111:1065–1074,
https://doi.org/10.1111/j.1365-2672.2011.05142.x . - Wei G., Xuebin Q., Yatao X., Ping L., Mathias A., Yan Z., et al., 2018. Effects of reclaimed water irrigation on microbial diversity and composition of soil with reducing nitrogen fertilization. Water, 10: 365–381,
https://doi.org/10.3390/w10040365 . - Woźniak M., Gałązka A., 2019. The rhizosphere microbiome and its beneficial effects on plants–current knowledge and perspectives. Postępy Mikrobiologii, 58(1): 59–69,
https://doi.org/10.21307/PM-2019.58.1.059 . - WYKAZ NAWOZOWYCH PRODUKTÓW MIKROBIOLOGICZNYCH.
https://www.iung.pl/wp-content/uploads/2025/04/wykaz_npm_25.04.2025.pdf . - Yadav A., Yadav K., 2024. Challenges and opportunities in biofertilizer commercialization. SVOA Microbiology, 5(1):1–14,
https://doi.org/10.58624/SVOAMB.2024.05.037 . - Yousaf M., Li J., Lu J., Ren T., Cong R., Fahad S., Li X., 2017. Effects of fertilization on crop production and nutrient-supplying capacity under rice-oilseed rape rotation system. Scientific Reports, 7(1): 1270,
https://doi.org/10.1038/s41598-017-01412-0 . - Zhao S-X., Deng Q-S., Jiang C-Y., Wu Q-S., Xue Y-B., Li G-L., Zhao J-J., Zhou N., 2023. Inoculation with potassium solubilizing bacteria and its effect on the medicinal characteristics of Paris polyphylla var yunnanensis. Agriculture, 13(1): 21,
https://doi.org/10.3390/agriculture13010021 . - Zhu F., Qu L., Hong X., Sun X., 2011. Isolation and characterization of a phosphate solubilizing halophilic bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the coast of yellow sea of China. Evidence-Based Complementary and Alternative Medicine, 615032,
https://doi.org/10.1155/2011/615032 .