Have a personal or library account? Click to login
Effect of fertilization with nitrogen and microelements on the content of total organic carbon and dissolved organic carbon in Luvisols Cover

Effect of fertilization with nitrogen and microelements on the content of total organic carbon and dissolved organic carbon in Luvisols

Open Access
|Apr 2025

References

  1. Banach-Szott M., Dębska B., Tobiasova E., 2021. Properties of humic acids depending on the land use in different parts of Slovakia. Environmental Science and Pollution Research, 28: 58068-58080, https://doi.org/10.1007/s11356-021-14616-9
  2. Bednarek W., Reszka R., 2008. Influence of liming and mineral fertilization on the content of mineral nitrogen in soil. Journal of Elementology, 13(3): 301-308.
  3. Blecharczyk A., Małecka-Jankowiak I., Sawińska Z., Piechota T., Waniorek W., 2018. 60 years of experience in Brody with crop rotation and monoculture). pp. 27-40. In: Long-term experiments in agricultural studies in Poland; eds: Marks M., Jastrzębska M., Kostrzewska M.K.; Wyd. Nauk. UWM, Olsztyn.
  4. Bolan N.S., Adriano D.C., Kunhikrishnan A., James T., McDowell R., Senesi N., 2011. Dissolved organic matter: Biogeochemistry, dynamics, and environmental significance in soils. Advances in Agronomy, 110: 1-75, https://doi.org/10.1016/B978-0-12-385531-2.00001-3.
  5. Borowska K., Koper J., 2004. Changes in selenium content of slurry fertilised soil. Zmiany zawartości selenu w glebie nawożonej gnojowicą. Roczniki Gleboznawcze, 55(3): 53-58. (in Polish + summary in English)
  6. Brevik E.C., 2013. The potential impact of climate change on soil properties and processes and corresponding influence on food security. Agriculture, 3: 398-417, https://doi.org/10.1016/.chemosphere.2017.05.125.
  7. Cai A., Xu M., Wang B., Zhang W., Liang G., Hou E., Luo Y., 2019. Manure acts as a better fertilizer for increasing crop yields than synthetic fertilizer does by improving soil fertility. Soil and Tillage Research, 189: 168-175, https://doi.org/10.1016/j.still.2018.12.022.
  8. Cao Z.Y., Wang Y., Li J., Zhang J.J., He N.P., 2016. Soil organic carbon contents, aggregate stability, and humic acid composition in different alpine grasslands in Qinghai-Tibet Plateau. Journal of Mountain Science, 13: 2015-2027, https://doi.org/10.1007/s11629-015-3744-y.
  9. Chantigny M.H., 2003. Dissolved and water-extractable organic matter in soils: A review on the influence of land use and management practice. Geoderma, 113: 357-380, https://doi.org/10.1016/S0016-7061(02)00370-1.
  10. Chantigny M.H., Angers D.A., Prévost D., Simard R.R., Chalifour F.P., 1999. Dynamics of soluble organic C and C mineralization in cultivated soils with varying N fertilization. Soil Biology and Biochemistry, 31: 543-550, https://doi.org/10.1016/S0038-0717(98)00139-4.
  11. COM 231 final., 2006. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Thematic Strategy for Soil Protection, Brussels. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52006DC0231&from=EN (accessed on 26 September 2006).
  12. Dębska B., Długosz J., Piotrowska-Długosz A., Banach-Szott M., 2016. The impact of a bio-fertilizer on the soil organic matter status and carbon sequestration – results from a field-scale study. Journal of Soils and Sediments, 16: 2335-2343, https://doi.org/10.1007/s11368-016-1430-5.
  13. Dębska B., Jaskulska I., Jaskulski D., 2020. Method of till-age with the factor determining the quality of organic matter. Agronomy, 10: 1250, https://doi.org/10.3390/agronomy10091250.
  14. Dębska B., Kotwica K., Banach-Szott M., Spychaj-Fabisiak E., Tobiašová E., 2022. Soil fertility improvement and carbon sequestration through exogenous organic matter and biostimulant application. Agriculture, 2: 1478, https://doi.org/10.3390/agriculture12091478.
  15. Embacher A., Zsolnay A., Gattinger A., Munch J.C., 2008. The dynamics of water extractable organic matter (WEOM) in common arable topsoils: II. Influence of mineral and combined mineral and manure fertilization in Haplic Chernozem. Geoderma, 148: 63-69, https://doi.org/10.1016/j.geoderma.2008.09.006.
  16. Gonet S.S., Dębska B., Pakula J., 2002. The content of the dissolved organic carbon in soils and organic fertilizers. PTSH, Wrocław, Poland.
  17. Guimaraes D.V., Isidoria M., Gonzaga S., Da Silva T.O., Da Silva T.L., Da Silva Dias N., Silva Matias M.I., 2013. Soil organic matter pools and carbon fractions in soil under different land uses. Soil and Tillage Research, 126: 177-182, https://doi.org/10.1016/j.still.2012.07.010.
  18. Guo Z., Zhang Z., Zhou H., Wang D., Peng X., 2019. The effect of 34-year continuous fertilization on the SOC physical fractions and its chemical composition in a Vertisol. Scientific Reports, 9: 2505, https://doi.org/10.1038/s41598-019-38952-6.
  19. Hack H., Bleiholder H., Buhr L., Meier U., Schnock-Fricke U., Weber E., Witzenberger A. 1992. Einheitliche Codierung der phänologischen Entwicklungsstadien mono- und dikotyler Pflanzen – Erweiterte BBCH-Skala, Allgemein. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes, 44: 265-270.
  20. Hari V., Rakovec O., Markonis Y., Hanel M., Kumar R., 2020. Increased future occurrences of the exceptional 2018–2019 Central European drought under global warming. Scientific Reports, 10(1): 12207, https://doi.org/10.1038/s41598-020-68872-9.
  21. Hossain A., Krupnik T.J., Timsina J., Mahboob M.G., Chaki A.K., Farooq M., 2020. Agricultural land degradation: processes and problems undermining future food security. pp. 17-61. In: Environment, Climate, Plant and Vegetation Growth; Fahad S., Hasanuzzaman M., Alam M., Ullah H., Saeed M., Ali Khan I., Adnan M.; Cham, Springer International Publishing, https://doi.org/10.1007/978-3-030-49732-3_2.
  22. Jaskulska I., Jaskulski D., 2021. Winter wheat and spring barley canopies under strip-till one-pass technology. Agronomy, 11(3): 426, https://doi.org/10.3390/agronomy11030426
  23. Jokubauskaite I., Slepetiene A., Karcauskiene D., 2015. Influence of different fertilization on the dissolved organic carbon, nitrogen and phosphorus accumulation in acid and limed soils. Eurasian Journal of Soil Science, 4: 137-143, https://doi.org/10.18393/ejss.91434.
  24. Kalbitz K., Solinger S., Park J.H., Michalzik B., Matzner E., 2000. Controls on the dynamics of organic matter in soils: A review. Soil Science, 165: 277-304, https://doi.org/10.1097/00010694-200004000-00001.
  25. Kirkby C.A., Richardson A.E., Wade L.J., Passioura J.B., Batten G.D., Blanchard C., Kirkegaard J.A., 2014. Nutrient availability limits carbon sequestration in arable soils. Soil Biology and Biochemistry, 68: 402-409, https://doi.org/10.1016/j.soilbio.2013.09.032.
  26. Kopittke P.M., Menzies N.W., Wang P., McKenna B.A., Lombi E., 2019. Soil and the intensification of agriculture for global food security. Environment International, 132: 105078.
  27. Kotecki A. et al., 2020. Uprawa roślin. Praca zbiorowa pod red. A. Koteckiego T. 1. Wyd. 1. ISBN 978-837717-339-8.
  28. Kuś J., 2015. Glebowa materia organiczna – znaczenie, zawartość i bilansowanie. Studia i Raporty IUNG-PIB, 45(19): 27-53. https://doi.10.26114/sir.iung.2015.45.02.
  29. Lal R., Negassa W., Lorenz K., 2015. Carbon sequestration in soil. Current Opinion in Environmental Sustainability, 15: 79-86, https://doi.org/10.1016/j.cosust.2015.09.002.
  30. Law B.E., Hudiburg T.W., Berner L.T., Kent J.J., Buotte P.C., Harmon M.E., 2018. Land use strategies to mitigate climate change in carbon dense temperate forests. Proceedings of the National Academy of Sciences of the United States of America, 115: 3663-3668, https://doi.org/10.1073/pnas.1720064115.
  31. Lemanowicz J., Bartkowiak A., Dębska B., Majcherczak E., Michalska A., 2024. Mineral Components, Organic Matter Quality and Soil Enzymatic Activity under the Influence of Differentiated Farmyard Manure and Nitrogen Fertilisation. Minerals, 14, 645, https://doi.org/10.3390/min14070645.
  32. Levander O.A., Burk R.F., 2006. Uptake of human dietary standards for selenium. pp. 399-410. In: Selenium Its Molecular Biology and Role in Human Health; Hatfield D.L., Berry M.J., Gladyshev V.N.; Springer, New York, USA, 2nd edition.
  33. Matysiak K., Strażyński P., 2018. Fazy wzrostu i rozwoju wybranych gatunków roślin uprawnych i chwastów według skali BBCH. Cz. I. Wyd. Instytut Ochrony Roślin, Państwowy Instytut Badawczy (IOR-PIB), Poznań, pp. 184.
  34. McDowell W., Currie W.S., Aber J.D., Yano Y., 1998. Effects of chronic nitrogen amendments on production of dissolved organic carbon and nitrogen in forest soils. Water Air Soil Pollution, 105: 175-182, https://doi.org/10.1023/A:1005032904590.
  35. Menšík L., Hlisnikovský L., Pospíšilová L., Kunzová E., 2018. The effect of application of organic manures and mineral fertilizers on the state of soil organic matter and nutrients in the long-term field experiment. Journal of Soils and Sediments, 18: 2813-2822, https://doi.org/10.1007/s11368-018-1933-3.
  36. Moreno R.G., Burdock R., Alvarez M.C.D., Crawford J.W., 2013. Managing the Selenium Content in Soils in Semiarid Environments through the Recycling of Organic Matter. Applied and Environmental Soil Science, 283468, http://dx.doi.org/10.1155/2013/283468.
  37. Mythili, S. Natarajan K., Kalpana R., 2003. Zinc nutrition in rice: a review. Agricultural Reviews, 24(2): 136-141. Orzechowski M., Smólczyński S., 2021. Content of selected macro- and microelements in surface formations of organic soils in NE Poland. Polish Journal of Soil Science, 54(2): 155-165, doi: 10.17951/pjss/2021.54.2.155.
  38. Ouyang Y., Norton J.M., 2020. Short-term nitrogen fertilization affects microbial community composition and nitrogen mineralization functions in an agricultural soil. Applied and Environmental Microbiology, 18: 86(5), e02278-19, https://doi.org/10.1128/AEM.02278.
  39. Pikuła D., 2018. Wykorzystanie właściwości spektralnych kwasów huminowych do oceny właściwości próchnicy. Studia i Raporty IUNG-PIB Puławy, 56(10): 99-109, https://doi.10.26114/sir.iung.2018.56.08.
  40. Piotrowska M., 1985. Occurrence of selenium in cultivated soils in Poland. Roczniki Gleboznawcze, 36(1): 147-149. (in Polish + summary in English and Russian)
  41. Ray D.K., West P.C., Clark M., Gerber J.S., Prishchepov A.V., Chatterjee S., 2019. Climate change has likely already affected global food production. PLoS One 14(5): e0217148, https://doi.org/10.1371/journal.pone.0217148.
  42. Rosa E., Dębska B., 2018. Seasonal changes in the content of dissolved organic matter in arable soils. Journal of Soils and Sediments, 18: 2703-2714, https://doi.org/10.1007/s11368-017-1797-y.
  43. Safeguarding our soils, 2017. Nature Communications, 8, 1989.
  44. Silva Lara T., de Lima Lessa J.H., Rezende Dazio de Souza K., Branco Corguinha A.P., Fabio Dias Martins A., Lopes G., Guimaraes Guilherme L.R., 2019. Selenium biofortification of wheat grain via foliar application and its effect on plant metabolism. Journal of Food Composition and Analysis, 81: 10-18, https://doi.org/10.1016/j.jfca.2019.05.002.
  45. Simon T., 2008. The influence of long-term organic and mineral fertilization on soil organic matter. Soil & Water Research, 3(2): 41-51, doi: 10.17221/21/2008-SWR.
  46. Stroud J.L., Broadle M.R., Foot I., Fairweather-Tait S.J., Hurst R., Knott P., Mowat H., Norman K., Scott P., Tucker M., White P.J., McGrath S.P., Zhao F.-J, 2010. Soil factors affecting selenium concentration in wheat grain and the fate and speciation of Se fertilisers applied to soil. Plant and Soil, 332(1): 19-30, https://doi.org/10.1007/s11104-009-0229-1.
  47. Systematyka gleb Polski, 2019. Polskie Towarzystwo Gleboznawcze, Komisja Genezy Klasyfikacji i Kartografii Gleb. Wyd. UP Wrocław, PTG, Wrocław–Warszawa.
  48. Szczepanek M., Stypczyńska Z., Dziamski A., Wichrowska D., 2020. Above- and below-ground part growth in chewings and strong creeping red fescue grown for seed resulting from retardants and N fertilization. Agronomy, 10(1): 4, https://doi.org/10.3390/agronomy10010004.
  49. Terzić D., Popović V.M., Malić N., Ikanović J., Rajičić V., Popović S., Lončar M., Lončarević V., 2019. Effects of long-term fertilization on yield of siderates and organic matter content of soil in the process of recultivation. Journal of Animal and Plant Sciences, 29(3): 790-795.
  50. Van Groenigen J.W., Van Kessel C., Hungate B.A., Oenema O., Powlson D.S., Van Groenigen K.J., 2017. Response to the letter to the editor regarding our viewpoint “sequestering soil organic carbon: A nitrogen dilemma”. Environmental Science and Technology, 51(20): 11503-11504, https://doi.org/10.1021/acs.est.7b04554.
  51. Ventorino V., De Marco A., Pepe O., De Santo A.V., Moschetti G., 2012. Impact of innovative agricultural practices of carbon sequestration on soil microbial community. pp. 145-178. In: Carbon Sequestration in Agricultural Soils; Piccolo A.; Springer, Berlin, Germany.
  52. Viet H.Q., 2023. Influence of 96 years of mineral and organic fertilization on selected soil properties: a case study from long-term field experiments in Skierniewice, central Poland. Soil Science Annual, 74(1): 161945, 1-11, doi.org/10.37501/soilsa/161945.
  53. Zsolnay A., 2003. Dissolved organic matter: artefacts, definitions and functions. Geoderma, 113: 187-209, doi.org/10.1016/S0016-7061(02)00361-0.
  54. Zsolnay A., Gorlitz H., 1994. Water extractable organic matter in arable soils effects of drought and long-term fertilization. Soil Biology and Biochemistry, 26: 1257-1261, https://doi.org/10.1016/0038-0717(94)90151-1
DOI: https://doi.org/10.2478/cag-2024-0016 | Journal eISSN: 3071-740X | Journal ISSN: 2081-2787
Language: English
Page range: 169 - 177
Submitted on: Oct 16, 2024
Accepted on: Dec 27, 2024
Published on: Apr 4, 2025
Published by: Institute of Soil Science and Plant Cultivation
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Magdalena Banach-Szott, Bożena Dębska, Michał Siennicki, Tomasz Knapowski, Piotr Wasilewski, published by Institute of Soil Science and Plant Cultivation
This work is licensed under the Creative Commons Attribution 4.0 License.