Have a personal or library account? Click to login
Importance and maintenance of Nicotiana genetic resources Cover

Importance and maintenance of Nicotiana genetic resources

Open Access
|Mar 2025

References

  1. Agacka M., Depta A., Börner M., Doroszewska T., Hay F.R., Börner A., 2013. Viability of Nicotiana spp. seeds stored under ambient temperature. Seed Science and Technology, 41: 474-478, https://doi.org/10.15258/sst.2013.41.3.15.
  2. Agacka M., Laskowska D., Doroszewska T., Hay F.R,. Börner A., 2014. Longevity of Nicotiana seeds conserved at low temperatures in ex situ genebanks. Seed Science and Technology, 42(3): 355-362, https://doi.org/10.15258/sst.2014.42.3.05.
  3. Baulcombe D.C., 1999. Fast forward genetics based on virus-induced gene silencing. Current opinion in plant biology, 2(2): 109-113 https://doi.org/10.1016/S1369-5266(99)80022-3.
  4. Berbeć A., Trojak-Goluch A., 2001. Response to black root rot (Thielaviopsis tabacina Ferr.) of several flu-cured tobacco (Nicotiana tabacum L.) genotypes in different testing environments. Plant Breeding and Seed Science, 45(2): 11-20.
  5. Berbeć A., 2006. Field performance of Poland’s new flue-cured tobacco varieties resistant to Chalara elegans. In CORESTA Congress, 15–20 October 2006, Paris, AP22.
  6. Berbeć A., 2007. Mieszańce Virginii odporne na czarną zgniliznę korzeni wyhodowane w IUNG – PIB oferowane do uprawy w roku 2008. Przegląd Tytoniowy, 4: 14-16.
  7. Berbeć A., 2001. Floral morphology and some other characteristics of iso-genomic alloplasmics of Nicotiana tabacum L. Beitrӓge zur Tabakforschung International/Contributions to Tobacco Research, 19(6): 309-314, doi: 10.2478/cttr-2013-0717.
  8. Berbeć A., Doroszewska T., 2020. The Use of Nicotiana species in tobacco improvement. pp. 101-146. In: The Tobacco Plant Genome, eds: N.V. Ivanov, N. Sierro, M.C. Peitsch; Springer.
  9. Berbeć A., Doroszewska T., 1992. Alloplasmic forms of cultivated tobacco (Nicotiana tabacum L.) with substituted cytoplasms from the species Nicotiana amplexicaulis, N. knightiana and N. raimondii. Pamiętnik Puławski, 100: 141-150. (in Polish + summary in English)
  10. Berbeć A., Laskowska D., 2005. Investigations of isogenomic allopasmics of flue-cured tobacco Nicotiana tabacum cv. Wiślica. Beitrӓge zur Tabakforschung International/Contributions to Tobacco Research, 21(5): 258-263, doi: 10.2478/ cttr-2013-0791.
  11. Bewley J.D., Black M., 2014. Physiology and biochemistry of seeds in relation to germination. Vol. 1 Development, germination, and growth. Springer-Verlag Berlin Heidelberg GmbH.
  12. Boczkowska M., Rucińska A., Targońska-Karasek, M., Olszak M., Niedzielski M., Rakoczy-Trojanowska M., 2018. Aging of seeds – a complex problem of gene banks. A review Agronomy Science, 73(4): 15-26, http://dx.doi.org/10.24326/asx.2018.4.2. (in Polish + summary in English)
  13. Bui P.T., Jenns A.E., Schneider S.M., Daub M.E., 1992. Resistance to Tobacco mosaic virus and Meloidogyne arenaria in fusion hybrids between Nicotiana tabacum and an N. repanda x N. sylvestris hybrid. Phytopathology, 82: 1305-1310, https://doi.org/10.1094/Phyto-82-1305.
  14. Buitink J., Leprince O., 2008. Intracellular glasses and seed survival in the dry state. Comptes rendus biologies, 331(10): 788-795, https://doi.org/10.1016/j.crvi.2008.08.002.
  15. Cho J.N., Ryu J.Y., Jeong Y.M., Park J., Song J.J., Amasino R.M., Noh B., Noh Y.S., 2012. Control of seed germination by light-induced histone arginine demethylation activity. Developmental cell, 22(4): 736-748, https://doi.org/10.1016/j.devcel.2012.01.024.
  16. Chojnowski M.G., Dostatny D.F., Bakalarska A., Kapusta E., Szyszkowska K., 2022. Active collection of seeds of genetic resources of horticultural plants in the regional centre for horticultural biodiversity of the National Institute of Horticultural Research in Skierniewice. Zeszyty Naukowe Instytutu Ogrodnictwa, 30: 1-14. (in Polish + summary in English) CTRI, 2024, ALL INDIA NETWORK PROJECT ON TOBACCO, ANNUAL REPORT,2023-24.
  17. Czembor J.H., Gryziak G., Zaczyński M., Puchta M., Czembor E., 2017. Collection and preservation of plant genetic resources in Poland – review Part 2. Seed storage, herbarium maintenance, data bases and accession distribution. Agronomy Science, 72(4): 147-154, https://doi.org/10.24326/as.2017.4.14. (in Polish + summary in English)
  18. Czubacka A., 2022. The Use of the Polish Germplasm Collection of Nicotiana tabacum in Research and Tobacco Breeding for Disease Resistance. Agriculture, 12(12): 1994, https://doi.org/10.3390/agriculture12121994.
  19. Dehaye L., Duval M., Viguier D., Yaxley J., Job D., 1997. Cloning and expression of the pea gene encoding SBP65, a seed-specific biotinylated protein. Plant Molecular Biology, 35: 605-621, https://doi.org/10.1023/a:1005836405211.
  20. Depta A., Doroszewska T., 2023. Diversity of Nicotiana species. Polish Journal of Agronomy, 52(1): 123-135, https://doi.org/10.26114/pja.iung.521.2023.52.13.
  21. Depta A., Doroszewska T., 2016. Dzikie krewniaki tytoniu – źródło odporności na choroby i ozdoba ogrodu. Przegląd Tytoniowy, 2: 13-15.
  22. Depta A., Doroszewska T., Czubacka A., 2020. Diversification of resistance response of selected tobacco cultivars (Nicotiana tabacum) depending on the used Potato virus Y isolates. Polish Journal of Agronomy, 42: 3-13, https://doi.org/10.26114/pja.iung.428.2020.42.01. (in Polish + summary in English)
  23. Depta A., Doroszewska T., Czubacka A., 2021. Resistance response of the recently discovered species Nicotiana mutabilis to Potato virus Y (PVY) and Tomato spotted wilt virus (TSWV) compared to other sources of resistance. Agronomy, 11(8): 1617, https://doi.org/10.3390/agronomy11081617.
  24. Depta A., Doroszewska T., Czubacka A., 2023. Possibilities of using Nicotiana species in breeding for virus resistance. Polish Journal of Agronomy, 52(1): 97-100, https://doi.org/10.26114/pja.iung.520.2023.52.11.
  25. Depta A., Kursa K., Doroszewska T., Laskowska D., Trojak-Goluch A., 2018. Reaction of Nicotiana species and cultivars of tobacco to Tobacco Mosaic Virus and detection of the N gene that confers hypersensitive resistance. Czech Journal of Genetics and Plant Breeding, 54(3): 143-146, https://doi.org/10.17221/81/2017-CJGPB.
  26. Desheva G., 2016. The longevity of crop seeds stored under long-term condition in the national genebank of Bulgaria. Agriculture (Pol’nohospodárstvo), 62(3): 90-100, https://doi.org/10.1515/agri-2016-0010.
  27. Doroszewska T., 2010. Transfer of tolerance to different Potato virus Y (PVY) isolates from Nicotiana africana Merxm. to Nicotiana tabacum L. Plant breeding, 129(1): 76-81, https://doi.org/10.1111/j.1439-0523.2009.01634.x.
  28. Doroszewska T., Czubacka A., 2008. Ocena odporności odmian i linii hodowlanych tytoniu na wirusa Y ziemniaka (PVY). Studia i Raporty IUNG-PIB, 13: 29-42.
  29. Doroszewska T., Depta A., 2011. Resistance of wild Nicotiana species to different PVY isolates. Phytopathologia, 59: 9-24, https://doi.org/10.26114/pja.iung.428.2020.42.01.
  30. Doroszewska T., Depta A., Czubacka A., 2009. Album gatunków z rodzaju Nicotiana / Album of Nicotiana species. Instytut Uprawy Nawożenia i Gleboznawstwa – Państwowy Instytut Badawczy, Puławy.
  31. Doroszewska T., Przybyś M., 2007. Characterization of Nicotiana species resistance to black root rot [Thielaviopsis basicola [BERK.and BROOME] FERR. Zeszyty Problemowe Postępów Nauk Rolniczych, 1(517): 253-266. (in Polish + summary in English)
  32. Ellis R.H., Hong T.D., Roberts E.H., 1991. Seed moisture content, storage, viability and vigour. Seed Science Research, 1(4): 275-279.
  33. FAO, 2007. The value of plant genetic resources. Fact Sheet No. 2.
  34. FAO, 2010. The second report on the state of the world’s plant genetic resources for food and agriculture. Food and Agriculture Organization of the United Nations, Rome
  35. FAO, 2024. Genebank Standards for Plant Genetic Resources for Food and Agriculture. Rev. ed. Rome.
  36. Fu Y.B., Ahmed Z., Diederichsen A., 2015. Towards a better monitoring of seed ageing under ex situ seed conservation. Conservation Physiology, 3(1), cov026, https://doi.org/10.1093/conphys/cov026.
  37. Gajos Z., 1981. Transfer of resistance to tomato spotted wilt virus from Nicotiana alata Link. et Otto. to Nicotiana tabacum by crossing both species; Biuletyn CLPT 1981, 1–2, 3–24.
  38. Gryziak G., 2020. The importance of plant genetic resources. Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin, 290: 9-10. (in Polish + summary in English)
  39. Gryziak G., Zaczyński M., Klimont K., 2016. Roślinne zasoby genetyczne i ich wykorzystanie w hodowli i badaniach naukowych. Rolnictwo XXI wieku – problemy i wyzwania, 290: 9-10.
  40. Hay F.R., de Guzman F., Ellis D., Makahiya H., Borromeo T., Hamilton N.R.S., 2013. Viability of Oryza sativa L. seeds stored under genebank conditions for up to 30 years. Genetic Resources and Crop Evolution, 60: 275-296, https://doi.org/10.1007/s10722-012-9833-7.
  41. https://bankgenow.edu.pl/ (accessed 15.09.2024)
  42. http:/www.bergeracsb.com (accessed 15.09.2024)
  43. https://tric.caas.cn/en/index.htm (accessed 15.09.2024)
  44. https://www.croptrust.org/work/svalbard-global-seed-vault/ (accessed 15.09.2024)
  45. https://www.ipk-gatersleben.de/en/ (accessed 15.09.2024)
  46. Hundertmark M., Buitink J., Leprince O., Hincha D.K., 2011. The reduction of seed-specific dehydrins reduces seed longevity in Arabidopsis thaliana. Seed Science Research, 21(3): 165-173 https://doi.org/10.1017/S0960258511000079.
  47. ISTA, 2024. International rules for seed testing. International Seed Testing Association, Bassersdorf, Switzerland.
  48. Kincaid R.R., 1943. Effect of storage conditions on the viability of tobacco seed. Journal of Agricultural Research, 67: 407-410.
  49. Knapp S., 2020. Biodiversity (Solanaceae) of Nicotiana. The Tobacco Plant Genome, 21: 21-41, https://doi.org/10.1007/978-3-030-29493-9_2.
  50. Korbecka-Glinka G., Czubacka A., Przybyś M., Doroszewska T., 2017. Resistance vs. tolerance to Potato virus Y in tobacco – comparing effectiveness using virus isolates from Central Europe. Breeding science, 67(5): 459-465, https://doi.org/10.1270/jsbbs.17019.
  51. Korbecka-Glinka G., Trojak-Goluch A., Doroszewska T., Goepfert S., 2019. Wpływ introgresji pochodzącej od Nicotiana alata na deformacje morfologiczne linii hodowlanych tytoniu odpornych na wirus brązowej plamistości pomidora (TSWV). Biuletyn Instytutu Hodowli i Aklimatyzacji Roślin, 285: 123-124.
  52. Laskowska D., 2007. Biological diversity of Nicotiana tabacum L. germplasm maintained at the Institute of Soil Science and Plant Cultivation, State Research Institute in Pulawy. Zeszyty Problemowe Postępów Nauk Rolniczych, 517: 73-81. (in Polish + summary in English)
  53. Laskowska D., Berbeć A., 2006. Resistance to Tomato spotted wilt virus (TSWV) in Nicotiana alata and N. sanderae and in hybrids between N. tabacum and N. alata. Plant Breeding and Seed Science, 54: 91-100.
  54. Laskowska D., Doroszewska T., Depta A., Kursa K., Olszak-Przybyś H., Czubacka A., 2013. A survey of Nicotiana germplasm for resistance to Tomato spotted wilt virus (TSWV). Euphytica, 193: 207-219, https://doi.org/10.1007/s10681-013-0921-3.
  55. Lewis R.S., 2011. Nicotiana. pp. 185-208. In: Wild Crop Relatives: Genomic and Breeding Resources: Plantation and Ornamental Crops by Ch. Kole; Springer Verlag Berlin Heidelberg, https://doi.org/10.1007/978-3-642-21201-7_12.
  56. Lewis R.S., 2020. Nicotiana tabacum L.: Tobacco. Medicinal, aromatic and stimulant plants, 345-375, https://doi.org/10.1007/978-3-030-38792-1_9.
  57. Lewis R.S., 2021. Long-term public maintenance of Nicotiana germplasm. Nicotiana Germplasm Collection Task Force. Final Report. CORESTA, November.
  58. Marcos-Filho J., 2015. Seed vigor testing: an overview of the past, present and future perspective. Scientia Agricola, 72(4): 363-374, https://doi.org/10.1590/0103-9016-2015-0007.
  59. Michałowska D., Białoskórska D., 2022. Banki genów jako forma zwiększania różnorodności biologicznej w rolnictwie. Ziemniak Polski, 32(4).
  60. Nadarajan J., Walters C., Pritchard H.W., Ballesteros D., Colville L., 2023. Seed longevity – the evolution of knowledge and a conceptual framework. Plants, 12(3), 471, https://doi.org/10.3390/plants12030471.
  61. Nagel M., Börner A., 2010. The longevity of crop seeds stored under ambient conditions. Seed Science Research, 20(1): 1-12, https://doi.org/10.1017/S0960258509990213.
  62. Nagel M., Rehman-Arif M.A., Rosenhauer M., Börner A., 2010. Longevity of seeds – intraspecific differences in the Gatersleben genebank collections. pp. 179-181. In: Proc 60th Tagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs, Gumpenstein, Österreich, 24-26 November 2009.
  63. Pathirana R., Carimi F., 2022. Management and utilization of plant genetic resources for a sustainable agriculture. Plants, 11(15), 2038, https://doi.org/10.3390/plants11152038.
  64. Popova V.T., Ivanova T.A., Stoyanova A.S., Nikolova V.V., Docheva M.H., Hristeva T.H., Nikolov N.P., 2020. Chemical constituents in leaves and aroma products of Nicotiana rustica L. tobacco. International Journal of Food Studies, 9(1): 146-159, https://doi.org/10.7455/ijfs/9.1.2020.a2
  65. Priestley D.A., Cullinan V.I., Wolfe J., 1985. Differences in seed longevity at the species level. Plant, Cell and Environment, 8: 557-562.
  66. Probert R., Adams J., Coneybeer J., Crawford A., Hay F., 2007. Seed quality for conservation is critically affected by pre-storage factors. Australian Journal of Botany, 55(3): 326-335, https://doi.org/10.1071/BT06046.
  67. Puchta M., Groszyk J., Małecka M., Koter M.D., Niedzielski M., Rakoczy-Trojanowska M., Boczkowska M., 2021. Barley seeds miRNome stability during long-term storage and aging. International Journal of Molecular Sciences, 22(9), 4315, https://doi.org/10.3390/ijms22094315.
  68. Rao K.N., Babu D.P., Bangarayya M., 2003. Tobacco seed storage: 1. An inexpensive method for long term seed storage. Indian Journal of Agricultural Research, 37(1): 9-16.
  69. Rao N.K., Dulloo M.E., Engels J.M.M., 2017. A review of factors that influence the production of quality seed for long-term conservation in genebanks. Genetic resources and crop evolution, 64: 1061-1074, https://doi.org/10.1007/s10722-016-0425-9.
  70. Roberts E.H., 1972. Storage environment and the control of viability. pp. 14-58. In: Viability of seeds; Dordrecht: Springer Netherlands.
  71. Salgotra R.K., Chauhan B.S., 2023. Genetic diversity, conservation, and utilization of plant genetic resources. Genes, 14(1), 174, https://doi.org/10.3390/genes14010174.
  72. Sano N., Ono H., Murata K., Yamada T., Hirasawa T., Kanekatsu M., 2015. Accumulation of long-lived mRNAs associated with germination in embryos during seed development of rice. Journal of experimental botany, 66(13): 4035-4046, https://doi.org/10.1093/jxb/erv209
  73. Sano N., Rajjou L., North H. M., Debeaujon I., Marion-Poll A., Seo M., 2016. Staying alive: molecular aspects of seed longevity. Plant and Cell Physiology, 57(4): 660-674, https://doi.org/10.1093/pcp/pcv186.
  74. Singh M., Singh S., Randhawa H., Singh J., 2013. Polymorphic homoeolog of key gene of RdDM pathway, ARGONAUTE4_9 class is associated with pre-harvest sprouting in wheat (Triticum aestivum L.). PLoS One, 8(10), e77009, https://doi.org/10.1371/journal.pone.0077009.
  75. Solberg S.Ø., Yndgaard F., Andreasen C., Von Bothmer R., Loskutov I.G., Asdal Å., 2020. Long-term storage and longevity of orthodox seeds: A systematic review. Frontiers in Plant Science, 11, 1007, https://doi.org/10.3389/fpls.2020.01007.
  76. Steiner A., Ruckenbauer P., 1995. Germination of 110-year-old cereal and weed seeds, the Vienna Sample of 1877. Verification of effective ultra-dry storage at ambient temperature. Seed Science Research, 5(4): 195-199, https://doi.org/10.1017/S0960258500002853.
  77. Toole E.H., Brown E., 1946. Final results of the Duvel buried seed experiment. Journal of Agricultural Research, 72: 201-210.
  78. TRI, 2016, Tobacco Research Institute of the Chinese. Academy of Agricultural Sciences. Bulletin.
  79. Trojak-Goluch A., 2014. Wigola – doskonalsza wersja Wiślicy. Przegląd Tytoniowy, 130: 92-95.
  80. Walters C., 2015. Orthodoxy, recalcitrance and in-between: describing variation in seed storage characteristics using threshold responses to water loss. Planta, 242: 397-406, https://doi.org/10.1007/s00425-015-2312-6.
  81. Walters C., Berjak P., Pammenter N., Kennedy K., Raven P., 2013. Preservation of recalcitrant seeds. Science, 339(6122): 915-916, https://doi.org/10.2307/23367396.
  82. Walters C., Wheeler L., Grotenhuis J., 2005. Longevity of seeds stored in a genebank: Species characteristics. Seed Science Research, 15(1): 1-20, https://doi.org/10.1079/SSR2004195.
  83. Zhang K., Zhang Y., Sun J., Meng J., Tao J., 2021. Deterioration of orthodox seeds during ageing: Influencing factors, physiological alterations and the role of reactive oxygen species. Plant Physiology and Biochemistry, 158: 475-485, https://doi.org/10.1016/j.plaphy.2020.11.031.
DOI: https://doi.org/10.2478/cag-2024-0012 | Journal eISSN: 3071-740X | Journal ISSN: 2081-2787
Language: English
Page range: 126 - 133
Submitted on: Nov 19, 2024
Accepted on: Dec 13, 2024
Published on: Mar 1, 2025
Published by: Institute of Soil Science and Plant Cultivation
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Monika Agacka-Mołdoch, Teresa Doroszewska, published by Institute of Soil Science and Plant Cultivation
This work is licensed under the Creative Commons Attribution 4.0 License.