Have a personal or library account? Click to login
Alterations of Liver Histomorphology in Relation to Copper Supplementation in Inorganic and Organic Form in Growing Rats Cover

Alterations of Liver Histomorphology in Relation to Copper Supplementation in Inorganic and Organic Form in Growing Rats

Open Access
|Oct 2014

References

  1. 1. Andersen O.: Chemical and biological considerations in the treatment of metal intoxications by chelating agents. Mini Rev Med Chem 2004, 4, 11-21.10.2174/1389557043487583
  2. 2. Arakeri G., Brennan P.A.: Dietary copper: A novel predisposing factor for oral submucous fibrosis? Med Hypotheses 2013, 80, 241 -243.10.1016/j.mehy.2012.11.038
  3. 3. Arredondo M., Nunez M.T.: Iron and copper metabolism. Mol Aspects Med 2005, 26, 313-327.10.1016/j.mam.2005.07.010
  4. 4. Brewer G.J.: Copper toxicity in the general population. Clin Neurophysiol 2010, 121, 459-460.10.1016/j.clinph.2009.12.015
  5. 5. Broderius M., Prohaska J.R.: Differential impact of copper deficiency in rats on blood cuproproteins. Nutr Res 2009, 29, 494-502.10.1016/j.nutres.2009.06.006
  6. 6. Ding X., Xie H., Kang Y.J.: The significance of copper chelators in clinical and experimental application. J Nutr Biochem 2011, 22, 301-310.10.1016/j.jnutbio.2010.06.010
  7. 7. Ettle T., Schlegel P., Roth X., Investigations on iron bioavailability of different sources and supply levels in piglets. J Anim Physiol Anim Nutr (Berlin) 2008, 92, 30-45.
  8. 8. Feng J., Ma W.Q., Xu Z.R., Heb J.X., Wang Y.Z. Liu J.X.: The effect of iron glycine chelate on tissue mineral levels, fecal mineral concentration, and liver antioxidant enzyme activity in weanling pigs. Anim Feed Sci Technol 2009, 150, 106-113.10.1016/j.anifeedsci.2008.07.004
  9. 9. Feng J., Ma W.Q., Xua Z.R., Wang Y.Z. Liu J.X.: Effects of iron glycine chelate on growth, haematological and immunological characteristics in weanling pigs. Anim Feed Sci Technol 2007, 134, 261 -272.10.1016/j.anifeedsci.2007.02.005
  10. 10. Gaetke L.M., Chow C.K.: Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 2003, 189, 147-163.10.1016/S0300-483X(03)00159-8
  11. 11. Guo R., Henry P.R., Holwerda R.A., Cao J., Littell R.C., Miles R.D., Ammerman C.B. Chemical characteristics and relative bioavailability of supplemental organics copper sources for poultry. J Anim Sci 2001, 79, 1132-1141.10.2527/2001.7951132x11374531
  12. 12. Lesson S.: A new look at trace mineral nutrition of poultry: can we reduce the environmental burden of poultry mature? In: Biotechnology in the feed industry, Proc. 19th Alltech’s Annual Symp., Nottingham University Press, Nottingham, UK, 2003, pp. 125-129.
  13. 13. López de Romana D., Olivares M., Uauy R., Araya M.: Risks and benefits of copper in light of new insights of copper homeostasis. J Trace Elem Med Biol 2011, 25, 3-13.10.1016/j.jtemb.2010.11.004
  14. 14. Luo X.G., JI F., Lin Y.X., Steward F.A., Lu L., Liu B., Yu S.X.: Effects of dietary supplementation with copper sulfate or tribasic copper chloride on broiler performance, relative copper bioavailability, and oxidation stability of vitamin E in feed. Poult Sci 2005, 84, 888-893.10.1093/ps/84.6.888
  15. 15. Ma W.Q., Sun H.Y., Zhou J., Wu J., Feng J.: Effects of iron glycine chelate on growth, tissue mineral concentrations, Fecal mineral excretion, and liver antioxidant enzyme activities in broilers. Biol Trace Elem Res 2012, 149, 204-211.10.1007/s12011-012-9418-5
  16. 16. Mao S., Medeiros D.M., Hamlin R.L.: Marginal cooper and high fat diet produce alteration in electrocardiograms and cardiac ultrastructure in male rats. Nutrition 1999, 11/12, 890-898.10.1016/S0899-9007(99)00156-2
  17. 17. Megahed M.A., Hassanin K.M.A., Youssef I.M I., Elfghi A.B.A., Amin K.A.: Alterations in plasma lipids, glutathione and homocysteine in relation to dietary copper in rats. J Invest Biochem 2013, DOI: 10.5455/jib.20130716075753.10.5455/jib.20130716075753
  18. 18. Männer K., Simon O., Schlegel P.: Effects of different iron, manganese, zinc and copper sources (sulfates, chelates, glycinates) on their bioavailability in early weaned piglets. In: 9. Tagung Schweine - und Geflügelernährung. Edited by Rodehutscord M., Universität Halle-Wittenberg, Germany, 2006.
  19. 19. Peňa M.M.O., Lee J., Thiele D.J.: A delicate balance: homeostatic control of copper uptake and distribution. J Nutr 1999, 1129, 1251-1260.10.1093/jn/129.7.1251
  20. 20. Pineda O., Ashmead H.D.: Effectiveness of treatment of iron-deficiency anemia in infants and young children with ferrous bis-glycinate chelate. Nutrition 2001, 17, 381-384.10.1016/S0899-9007(01)00519-6
  21. 21. Reeves P.G., DeMars L.C.: Copper deficiency reduces iron absorption and biological half-life in male rats. J Nutr 2004, 134, 1953-1957.10.1093/jn/134.8.195315284382
  22. 22. Reeves P.G., Ralston N.V.C., Idso J.P., Lukaski H.C.: Contrasting and cooperative effects of copper and iron deficiencies in male rats fed different concentrations of manganese and different sources of sulfur amino acids in an AIN-93G-based diet. J Nutr 2004, 134, 416-125.10.1093/jn/134.2.41614747682
  23. 23. Mehta R., Templeton D.M., ‘Brien P.J.O.: Mitochondrial involvement in genetically determined transition metal toxicity. Copper toxicity. Chem Biol Interact 2006, 163, 77-85.10.1016/j.cbi.2006.05.01116824500
  24. 24. Rinaldi A.C.: Meeting report - copper research at the top. Biometals 2000, 13, 9-13.10.1023/A:1009228824220
  25. 25. Roberts E.A., Michael L.: Schilsky diagnosis and treatment of Wilson Disease: An Update. Hepatology 2008, 47, 2089-2111.10.1002/hep.2226118506894
  26. 26. SCAN Scientific Committee for Animal Nutrition: Opinion on the use of copper in feedingstuff. European Commission Publication, Brussels, 2003.
  27. 27. Sadhra S., Wheatley A.D., Cross H.J.: Dietary exposure to cooper in the European Union and its assessment for EU regulatory risk assessment. Sci Total Environ 2007, 374, 223234.10.1016/j.scitotenv.2006.12.04117270248
  28. 28. Skrivan M., Sknvanová V., Marounek M.: Effects of dietary zinc, iron and copper in layer feed on distribution of these elements in eggs, liver, excreta, soil and herbage. Poult Sci 2005, 84, 1570-1575.10.1093/ps/84.10.157016335126
  29. 29. Suriawinata A.A., Thung S.N.: Liver pathology an atlas and concise guide. Demos Medical, New York, 2011.
  30. 30. Swiątkiewicz S., Koreleski J., Hong D.Q. The bioavailability of zinc from inorganic and organic sources in broiler chickens as affected by addition of phytase. J Anim Feed Sci 2001, 10, 317328.10.22358/jafs/67987/2001
  31. 31. Tamim N., Angel R.: Phytate phosphorous hydrolysis as influenced by dietary calcium and micro-mineral source in broiler diets. J Agricult Food Chem 2003, 51, 4687-4693.10.1021/jf034122x14705897
  32. 32. Tomaszewska E., Dobrowolski P., Puzio I.: Postnatal administration of 2-oxoglutaric acid improves the intestinal barrier affected by the prenatal action of dexamethasone in pigs. Nutrition 2012, 28, 190-196.10.1016/j.nut.2011.05.01022018909
Language: English
Page range: 479 - 486
Submitted on: Apr 9, 2014
Accepted on: Aug 22, 2014
Published on: Oct 1, 2014
Published by: National Veterinary Research Institute in Pulawy
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2014 Ewa Tomaszewska, Piotr Dobrowolski, Małgorzata Kwiecień, Natalia Burmańczuk, Barbara Badzian, Sylwia Szymańczyk, Paulina Kurlak, published by National Veterinary Research Institute in Pulawy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.