Have a personal or library account? Click to login
Estimating Short-term Default Probabilities Conditional to Economic Conditions: Applications of Regularisation Approach and Economic Adjustment Coefficients Cover

Estimating Short-term Default Probabilities Conditional to Economic Conditions: Applications of Regularisation Approach and Economic Adjustment Coefficients

Open Access
|Jun 2025

References

  1. Afik, Z., Arad, O., & Galil, K. (2016). Using Merton model for default prediction: An empirical assessment of selected alternatives. Journal of Empirical Finance, 35, 43-67. https://doi.org/10.1016/j.jempfin.2015.09.004
  2. Anuwar, M. H., & Jaffar, M. M. (2017, August). Grading the probabilities of credit default risk for Malaysian listed companies by using the KMV-Merton model. In AIP Conference Proceedings (Vol. 1870, No. 1). AIP Publishing. https://doi.org/10.1063/1.4995857
  3. Baena-Mirabete, S., & Puig, P. (2018). Parsimonious higher order Markov models for rating transitions. Journal of the Royal Statistical Society: Series A (Statistics in Society), 181(1), 107-131. https://doi.org/10.1111/rssa.12267
  4. Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities. Journal of Political Economy, 81(3), 637-65. https://www.journals.uchicago.edu/doi/abs/10.1086/260062#
  5. Bladt, M., & Sørensen, M. (2005). Statistical inference for discretely observed Markov jump processes. Journal of the Royal Statistical Society Series B: Statistical Methodology, 67(3), 395-410. https://doi.org/10.1111/j.1467-9868.2005.00508.x
  6. Bladt, M., & Sørensen, M. (2009). Efficient estimation of transition rates between credit ratings from observations at discrete time points. Quantitative Finance, 9(2), 147-160. https://doi.org/10.1080/14697680802624948
  7. Blümke, O. (2022). Multiperiod default probability forecasting. Journal of Forecasting, 41(4), 677-696. https://doi.org/10.1002/for.2825
  8. Boreiko, D. V., Kaniovski, S. Y., Kaniovski, Y. M., & Pflug, G. C. (2019). Identification of hidden Markov chains governing dependent credit-rating migrations. Communications in Statistics-Theory and Methods, 48(1), 75-87. https://doi.org/10.1080/03610926.2017.1342841
  9. Bouri, E., Naeem, M. A., Nor, S. M., Mbarki, I. & Saeed, T. (2022). Government responses to COVID-19 and industry stock returns, Economic Research-Ekonomska Istraživanja, 35(1), 1967-1990. https://doi.org/10.1080/1331677X.2021.1929374
  10. Cappon, A., Gorenstein, A., Mignot, S., & Manuel, G. (2018). Credit ratings, default probabilities, and logarithms. The Journal of Structured Finance, 24(1), 39-49. https://doi.org/10.3905/jsf.2018.24.1.039
  11. Cathcart, L., Dufour, A., Rossi, L., & Varotto, S. (2020). The differential impact of leverage on the default risk of small and large firms. Journal of Corporate Finance, 60, 101541. https://doi.org/10.1016/j.jcorpfin.2019.101541
  12. Couderc, F., & Renault, O. (2006). Times-to-default: Life cycle, global and industry cycle impacts. SSRN.
  13. Crommelin, D. T., & Vanden-Eijnden, E. (2006). Fitting timeseries by continuous time Markov chains: A quadratic programming approach. Journal of Computational Physics, 217(2), 782-805. https://doi:10.1016/j.jcp.2006.01.045
  14. Derbali, A., & Jamel, L. (2019). Dependence of default probability and recovery rate in structural credit risk models: Case of Greek banks. Journal of the Knowledge Economy, 10(2), 711-733. https://doi.org/10.1007/s13132-017-0473-1
  15. dos Reis, G., & Smith, G. (2018). Robust and consistent estimation of generators in credit risk. Quantitative Finance, 18(6), 983-1001. https://doi.org/10.1080/14697688.2017.1383627
  16. Duffie, D., Saita, L., & Wang, K. (2007). Multi-period corporate default prediction with stochastic covariates. Journal of Financial Economics, 83(3), 635-665.
  17. Duyvesteyn, J., & Martens, M. (2015). Forecasting sovereign default risk with Merton’s model. The Journal of Fixed Income, 25(2), 58-71. https://doi.org/10.3905/jfi.2015.25.2.058
  18. Engelmann, B., & Ermakov, K. (2011). Transition matrices: Properties and estimation methods. The Basel II Risk Parameters: Estimation, Validation, Stress Testing-with Applications to Loan Risk Management, 103-116.
  19. Fernandes, L (2024, January 16). Default Transition & Recovery. S&P Global Ratings. https://www.spglobal.com/ratings/en/research/articles/240116-default-transition-and-recovery-corporate-defaults-jumped-80-in-2023-to-153-12968832
  20. Figlewski, S., Frydman, H., & Liang, W. (2012). Modeling the effect of macroeconomic factors on corporate default and credit rating transitions. International Review of Economics & Finance, 21(1), 87-105. https://doi.org/10.1016/j.iref.2011.05.004
  21. Gredil, O. R., Kapadia, N., & Lee, J. H. (2022). On the information content of credit ratings and market-based measures of default risk. Journal of Financial Economics, 146(1), 172-204. https://doi.org/10.1016/j.jempfin.2015.09.004
  22. Huang, J.-Z., & Kong, W. (2003). Explaining credit spread changes: New evidence from option-adjusted bond indexes. The Journal of Derivatives, 11(1), 30-44. https://doi.org/10.3905/jod.2003.319209
  23. Hughes, M., & Werner, R. (2016). Choosing Markovian credit migration matrices by nonlinear optimization. Risks, 4(3), 31. https://doi.org/10.3390/risks4030031
  24. Ibrahim, M., & Wong, A. (2006). The corporate bond market in Malaysia. Press & Communications CH-4002 Basel, Switzerland, 26(22), 114. https://www.bis.org/publ/bppdf/bispap26p.pdf
  25. Israel, R. B., Rosenthal, J. S., & Wei, J. Z. (2001). Finding generators for Markov chains via empirical transition matrices, with applications to credit ratings. Mathematical Finance, 11(2), 245-265. https://doi.org/10.1111/1467-9965.00114
  26. Jarrow, R. A., & Turnbull, S. M. (1995). Pricing derivatives on financial securities subject to credit risk. The Journal of Finance, 50(1), 53-85. https://doi.org/10.1111/j.1540-6261.1995.tb05167.x
  27. Jarrow, R. A., Lando, D., & Turnbull, S. M. (1997). A Markov model for the term structure of credit risk spreads. The Review of Financial Studies, 10(2), 481-523. https://doi.org/10.1093/rfs/10.2.481
  28. Kaniovski, Y. M., & Pflug, G. C. (2007). Risk assessment for credit portfolios: a coupled Markov chain model. Journal of Banking & Finance, 31(8), 2303-2323. https://doi.org/10.1016/j.jbankfin.2007.02.005
  29. Kariya, T., Yamamura, Y., & Inui, K. (2019). Empirical credit risk ratings of individual corporate bonds and derivation of term structures of default probabilities. Journal of Risk and Financial Management, 12(3), 124. https://doi.org/10.3390/jrfm12030124
  30. Kijima, M. (2002). Stochastic processes with applications to finance. New York: Chapman and Hall/CRC.
  31. Koopman, S. J., Lucas, A., & Monteiro, A. (2008). The multi-state latent factor intensity model for credit rating transitions. Journal of Econometrics, 142(1), 399-424. ttps://doi.org/10.1016/j.jeconom.2007.07.001
  32. Kreinin, A., & Sidelnikova, M. (2001). Regularization algorithms for transition matrices. Algo Research Quarterly, 4(1/2), 23-40.
  33. Lund, S., Woetzel, J., Windhagen, E., Dobbs, R., & Goldshtein, D. (2018). Rising corporate debt: Peril or promise. McKinsey Global Institute Discussion Paper, 18. https://www.mckinsey.com/~/media/mckinsey/business%20functions/strategy%20and%20corporate%20finance/our%20insights/rising%20corporate%20debt%20peril%20or%20promise/mgi-rising-corporate-debt-discussion-paper-oct-2018.pdf
  34. Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates. Journal of Finance, 29(2), 449-470. https://doi.org/10.2307/2978814
  35. Möstel, L., Pfeuffer, M., & Fischer, M. (2020). Statistical inference for Markov chains with applications to credit risk. Computational Statistics, 35(4), 1659-1684. https://doi.org/10.1007/s00180-020-00978-0
  36. Munandar, A. (2014). Merton models: Mapping default of government bank in Indonesia. Abstract of Economic, Finance and Management Outlook, 2, 1-23. http://www.conscientiabeam.com/ebooks/2nd%20ICEFMO-206-(115-120)-2014.pdf
  37. OECD. (2024). Global Debt Report. https://www.oecd-ilibrary.org/finance-and-investment/global-debt-report-2024_eaa90025-en
  38. Pasricha, P., Selvamuthu, D., & Arunachalam, V. (2017). Markov regenerative credit rating model. The Journal of Risk Finance, 18(3), 311-325. https://doi.org/10.1108/JRF-09-2016-0123
  39. Pesaran, M. H., Schuermann, T., Treutler, B. J., & Weiner, S. M. (2006). Macroeconomic dynamics and credit risk: a global perspective. Journal of Money, Credit and Banking, 38(5), 1211-1261. https://doi.org/10.1353/mcb.2006.0074
  40. Petrov, D., & Pomazanov, M. (2009). Validation method of maturity adjustment formula for Basel II capital requirement. The Journal of Risk Model Validation, 3(3), 81-97.
  41. Pfeuffer, M., Möstel, L., & Fischer, M. (2019). An extended likelihood framework for modelling discretely observed credit rating transitions. Quantitative Finance, 19(1), 93-104. https://doi.org/10.1080/14697688.2018.1465196
  42. S&P Ratings Global (2024). Default, Transition, and Recovery: 2023 Annual Global Corporate Default and Rating Transition Study. https://www.spglobal.com/ratings/en/research/articles/240328-default-transition-and-recovery-2023-annual-global-corporate-default-and-rating-transition-study-13047827
  43. Saad, N. M., Haniff, M. N., & Ali, N. (2016). Corporate governance and default risk in long-term conventional bonds and sukuk in Malaysia. International Journal of Applied Business and Economic Research, 14(6), 3709-3723.
  44. Saad, N. M., Haniff, M. N., & Ali, N. (2019). The encumbrance of institutional investor and board of directors in reducing risk of default for conventional bonds and sukuk in Malaysia. Jurnal Pengurusan, 55, 85-96. http://journalarticle.ukm.my/14532/
  45. Samsuddin, S., Tafri, F. H., Nawawi, A. H. M., & Aziz, N. A. (2011, September 25-28). Measuring the default risk of Sukuk holders for shariah compliance companies in Malaysia: Using Merton’s model with maximum likelihood estimator. In 2011 IEEE Symposium on Business, Engineering and Industrial Applications (ISBEIA), Langkawi, Malaysia. https://ieeexplore.ieee.org/document/6088789
  46. Topcu, M. & Gulal, O.S. (2020). The impact of COVID-19 on emerging stock markets. Finance Research Letters, 36, 101691. https://doi.org/10.1016/j.frl.2020.101691
  47. Vaněk, T., & Hampel, D. (2017). The probability of default under IFRS 9: Multi-period estimation and macroeconomic forecast. Acta universitatis agriculturae et silviculturae mendelianae brunensis. 65(2), 759-776. https://dx.doi.org/10.11118/actaun201765020759
  48. Virolainen, K., (2004). Macro stress testing with a macroeconomic credit risk model for Finland. Research Discussion Papers 18/2004, Bank of Finland. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3018077
  49. Weißbach, R., & Strohecker, F. (2016). Modeling rating transitions with instantaneous default. Economics Letters, 145, 38-40.
  50. Xing, H., & Yu, Y. (2018). Firm’s credit risk in the presence of market structural breaks. Risks, 6(4), 136. https://doi.org/10.3390/risks6040136
  51. Zhu, S. H. (2016). Region and Sector Effects in Stress Testing of Commercial Loan Portfolio. In Commercial Banking Risk Management: Regulation in the Wake of the Financial Crisis (pp. 201-229). New York: Palgrave Macmillan US. https://doi.10.1057/978-1-137-59442-6
DOI: https://doi.org/10.2478/bsrj-2025-0009 | Journal eISSN: 1847-9375 | Journal ISSN: 1847-8344
Language: English
Page range: 178 - 197
Submitted on: Dec 14, 2024
|
Accepted on: Aug 31, 2024
|
Published on: Jun 20, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Siti Aisyah Mustafa, Safwan Mohd Nor, Zairihan Abdul Halim, Nur Haiza Muhammad Zawawi, published by IRENET - Society for Advancing Innovation and Research in Economy
This work is licensed under the Creative Commons Attribution 4.0 License.