References
- Anselin L., & Rey, S. J. (2014). Modern Spatial Econometrics in Practice. GeoDa Press LLC, Chicago.
- Basile, R., Durbán, M., Mínguez, R., María Montero, J., & Mur, J. (2014). Modeling regional economic dynamics: Spatial dependence, spatial heterogeneity and nonlinearities. Journal of Economic Dynamics and Control, 48, 229-245. https://doi.org/10.1016/j.jedc.2014.06.011
- Basile, R., & Mínguez, R. (2018). Advances in Spatial Econometrics: Parametric vs. Semiparametric Spatial Autoregressive Models, In: Commendatore, P., Kubin, I., Bougheas, S., Kirman, A., Kopel, M., Bischi, G. (eds) The Economy as a Complex Spatial System., pp. 81-106, Springer Proceedings in Complexity. Springer.
- Chi, G., & Zhu, J. (2020). Spatial Regression Models for the Social Sciences. https://doi.org/10.4135/9781544302096
- Eurostat. (2023). Regional statistics, available at https://ec.europa.eu/eurostat/web/regions/database (15 March 2023).
- Fahrmeir, L., Kneib, T., Lang, S., & Marx, B. D. (2021). Regression Models, Methods and Applications, Springer Berlin, Heidelberg.
- Formánek, T. (2019). Spatial econometric analysis with applications to regional macroeconomic dynamics. Habilitation Thesis, University of Economics, Prague.
- Geniaux, G., & Martinetti, D. (2018). A new method for dealing simultaneously with spatial autocorrelation and spatial heterogeneity in regression models. Regional Science and Urban Economics, 72, 74-85. https://doi.org/10.1016/j.regsciurbeco.2017.04.001
- Hastie, T., & Tibshirani, R. (1986). Generalized Additive Models. Statistical Science, 1(3). https://doi.org/10.1214/ss/1177013604
- Hastie, T. J., Tibshirani, R. J. (1990). Generalized Additive Models, Chapman & Hall/CRC.
- Lung-Fei, L. (2022). Spatial Econometrics: Spatial Autoregressive Models, World Scientific Publishing Company, p. 896.
- Mínguez, R., Basile, R., & Durbán, M. (2022). An introduction to pspatreg: A new R package for semiparametric spatial autoregressive analysis. REGION, 9(2), R1-R15. https://doi.org/10.18335/region.v9i2.450
- Pavlovčič-Prešeren, P., Stopar, B., & Sterle, O. (2019). Application of different radial basis function networks in the illegal waste dump-surface modelling. Central European Journal of Operations Research, 27(3), 783-795. https://doi.org/10.1007/s10100-018-0586-z
- Perperoglou, A., Sauerbrei, W., Abrahamowicz, M., & Schmid, M. (2019). A review of spline function procedures in R. BMC Medical Research Methodology, 19(1). https://doi.org/10.1186/s12874-019-0666-3
- Wahyuni, S. A., Ratnawati, R., Indriyani, I., & Fajri, M. (2020). Spline Regression Analysis to Modelling The Open Unemployment Rate in Sulawesi. Natural Science: Journal of Science and Technology, 9(2). https://doi.org/10.22487/25411969.2020.v9.i2.15202
- Wood, S. N. (2017). Generalized Additive Models: An Introduction with R, Second Edition (2nd ed.). Chapman and Hall/CRC.
- Wood, S. (2023). Mixed GAM Computation Vehicle with Automatic Smoothness Estimation, available at https://cran.r-project.org/web/packages/mgcv/mgcv.pdf (15 January 2024).