References
- Abou Jieb, Y., & Hossain, E. (2022). Photovoltaic Systems. Springer International Publishing. https://doi.org/10.1007/978-3-030-89780-2
- Ahmed, W., Hanif, A., Kallu, K. D., Kouzani, A. Z., Ali, M. U., & Zafar, A. (2021). Photovoltaic panels classification using isolated and transfer learned deep neural models using infrared thermographic images. Sensors, 21(16), 5668. https://doi.org/10.3390/s21165668
- Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1), 53. https://doi.org/10.1186/s40537-021-00444-8
- Bakır, H., Kuzhippallil, F. A., & Merabet, A. (2023). Automatic detection of deteriorated photovoltaic modules using IRT images and deep learning (CNN, LSTM) strategies. Engineering Failure Analysis, 146, 107132. https://doi.org/10.1016/j.engfailanal.2023.107132
- Barić, A. (2022). The Role of Social Responsibility in Company Strategy. ENTRENOVA - ENTerprise REsearch InNOVAtion, 8(1), 390–405. https://doi.org/10.54820/entrenova-2022-0033
- Benghanem, M., Mellit, A., & Moussaoui, C. (2023). Embedded Hybrid Model (CNN– ML) for Fault Diagnosis of Photovoltaic Modules Using Thermographic Images. Sustainability, 15(10), 7811. https://doi.org/10.3390/su15107811
- Bommes, L., Pickel, T., Buerhop-Lutz, C., Hauch, J., Brabec, C., & Peters, I. M. (2021). Computer vision tool for detection, mapping, and fault classification of photovoltaics modules in aerial IR videos. Progress in Photovoltaics: Research and Applications, 29(12), 1236–1251. https://doi.org/10.1002/pip.3448
- Cipriani, G., D’Amico, A., Guarino, S., Manno, D., Traverso, M., & Di Dio, V. (2020). Convolutional Neural Network for Dust and Hotspot Classification in PV Modules. Energies, 13(23), 6357. https://doi.org/10.3390/en13236357
- Critical Appraisal Skills Programme. (2018). CASP Qualitative Checklist. https://caspuk.net/checklists/casp-qualitative-studies-checklist-fillable.pdf
- Fonseca Alves, R. H., Deus Júnior, G. A., de, Marra, E. G., & Lemos, R. P. (2021). Automatic fault classification in photovoltaic modules using Convolutional Neural Networks. Renewable Energy, 179, 502–516. https://doi.org/10.1016/j.renene.2021.07.070
- Grimaccia, F., Leva, S., Dolara, A., & Aghaei, M. (2017). Survey on PV Modules’ Common Faults After an O&M Flight Extensive Campaign Over Different Plants in Italy. IEEE Journal of Photovoltaics, 7(3), 810-816. https://doi.org/10.1109/jphotov.2017.2674977
- Hassan, S., & Dhimish, M. (2023). Dual spin max pooling convolutional neural network for solar cell crack detection. Scientific Reports, 13(1), 11099. https://doi.org/10.1038/s41598-023-38177-8
- Huerta Herraiz, Á., Pliego Marugán, A., & García Márquez, F. P. (2020). Photovoltaic plant condition monitoring using thermal images analysis by convolutional neural network-based structure. Renewable Energy, 153, 334–348. https://doi.org/10.1016/j.renene.2020.01.148
- Hussain, T., Hussain, M., Al-Aqrabi, H., Alsboui, T., & Hill, R. (2023). A Review on Defect Detection of Electroluminescence-Based Photovoltaic Cell Surface Images Using Computer Vision. Energies, 16(10), 4012. https://doi.org/10.3390/en16104012
- Hwang, H. P.-C., Ku, C. C.-Y., & Chan, J. C.-C. (2021). Detection of Malfunctioning Photovoltaic Modules Based on Machine Learning Algorithms. IEEE Access, 9, 37210–37219. https://doi.org/10.1109/ACCESS.2021.3063461
- International electrotechnical commission. (2020). Photovoltaic (PV) systems - Requirements for testing, documentation and maintenance - Part 3: Photovoltaic modules and plants - Outdoor infrared thermography, IEC TS 62446-3:2017.
- Jia, Y., Chen, G., & Zhao, L. (2024). Defect detection of photovoltaic modules based on improved VarifocalNet. Scientific Reports, 14(1), 15170. https://doi.org/10.1038/s41598-024-66234-3
- Kellil, N., Aissat, A., & Mellit, A. (2023). Fault diagnosis of photovoltaic modules using deep neural networks and infrared images under Algerian climatic conditions. Energy, 263, 125902. https://doi.org/10.1016/j.energy.2022.125902
- Kirsten Vidal de Oliveira, A., Aghaei, M., & Rüther, R. (2020). Aerial infrared thermography for low-cost and fast fault detection in utility-scale PV power plants. Solar Energy, 211, 712–724. https://doi.org/10.1016/j.solener.2020.09.066
- Lofstad-Lie, V., Marstein, E. S., Simonsen, A., & Skauli, T. (2022). Cost-Effective Flight Strategy for Aerial Thermography Inspection of Photovoltaic Power Plants. IEEE Journal of Photovoltaics, 12(6), 1543–1549. https://doi.org/10.1109/JPHOTOV.2022.3202072
- Manno, D., Cipriani, G., Ciulla, G., Di Dio, V., Guarino, S., & Lo Brano, V. (2021). Deep learning strategies for automatic fault diagnosis in photovoltaic systems by thermographic images. Energy Conversion and Management, 241, 114315. https://doi.org/10.1016/j.enconman.2021.114315
- Masita, K., Hasan, A., & Shongwe, T. (2022). 75MW AC PV Module Field Anomaly Detection Using Drone-Based IR Orthogonal Images With Res-CNN3 Detector. IEEE Access, 10, 83711–83722. https://doi.org/10.1109/ACCESS.2022.3194547
- Mellit, A. (2022). An embedded solution for fault detection and diagnosis of photovoltaic modules using thermographic images and deep convolutional neural networks. Engineering Applications of Artificial Intelligence, 116, 105459. https://doi.org/10.1016/j.engappai.2022.105459
- Nooralishahi, P., Ibarra-Castanedo, C., Deane, S., López, F., Pant, S., Genest, M., Avdelidis, N. P., & Maldague, X. P. V. (2021). Drone-Based Non-Destructive Inspection of Industrial Sites: A Review and Case Studies. Drones, 5(4), 106. https://doi.org/10.3390/drones5040106
- Pejić Bach, M., Ivec, A., & Hrman, D. (2023a). Industrial Informatics: Emerging Trends and Applications in the Era of Big Data and AI. Electronics, 12(10), 2238. https://doi.org/10.3390/electronics12102238
- Pejić Bach, M., Topalović, A., Krstić, Ž., & Ivec, A. (2023b). Predictive Maintenance in Industry 4.0 for the SMEs: A Decision Support System Case Study Using Open-Source Software. Designs, 7(4), 98. https://doi.org/10.3390/designs7040098
- Sharma, V., & Chandel, S. S. (2013). Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review. Renewable and Sustainable Energy Reviews, 27, 753–767. https://doi.org/10.1016/j.rser.2013.07.046
- SolarPower Europe. (2023). EU Market Outlook For Solar Power 2023 - 2027.
- SolarPower Europe. (2024). Global Market Outlook for Solar Power 2024-2028.
- Taye, M. M. (2023). Theoretical Understanding of Convolutional Neural Network: Concepts, Architectures, Applications, Future Directions. Computation, 11(3), 52. https://doi.org/10.3390/computation11030052
- United Nations Framework Convention on Climate Change. (2015). Adoption of the Paris Agreement.
- United Nations Framework Convention on Climate Change. (2023). Summary of Global Climate Action at COP28.
- Wang, J., Bi, L., Sun, P., Jiao, X., Ma, X., Lei, X., & Luo, Y. (2022). Deep-Learning-Based Automatic Detection of Photovoltaic Cell Defects in Electroluminescence Images. Sensors, 23(1), 297. https://doi.org/10.3390/s23010297
- Zefri, Y., ElKettani, A., Sebari, I., & Ait Lamallam, S. (2018). Thermal Infrared and Visual Inspection of Photovoltaic Installations by UAV Photogrammetry—Application Case: Morocco. Drones, 2(4), 41. https://doi.org/10.3390/drones2040041
- Zefri, Y., Sebari, I., Hajji, H., & Aniba, G. (2022). Developing a deep learning-based layer-3 solution for thermal infrared large-scale photovoltaic module inspection from orthorectified big UAV imagery data. International Journal of Applied Earth Observation and Geoinformation, 106, 102652. https://doi.org/10.1016/j.jag.2021.102652