Ahmed, W., Hanif, A., Kallu, K. D., Kouzani, A. Z., Ali, M. U., & Zafar, A. (2021). Photovoltaic panels classification using isolated and transfer learned deep neural models using infrared thermographic images. Sensors, 21(16), 5668. https://doi.org/10.3390/s21165668
Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1), 53. https://doi.org/10.1186/s40537-021-00444-8
Bakır, H., Kuzhippallil, F. A., & Merabet, A. (2023). Automatic detection of deteriorated photovoltaic modules using IRT images and deep learning (CNN, LSTM) strategies. Engineering Failure Analysis, 146, 107132. https://doi.org/10.1016/j.engfailanal.2023.107132
Barić, A. (2022). The Role of Social Responsibility in Company Strategy. ENTRENOVA - ENTerprise REsearch InNOVAtion, 8(1), 390–405. https://doi.org/10.54820/entrenova-2022-0033
Benghanem, M., Mellit, A., & Moussaoui, C. (2023). Embedded Hybrid Model (CNN– ML) for Fault Diagnosis of Photovoltaic Modules Using Thermographic Images. Sustainability, 15(10), 7811. https://doi.org/10.3390/su15107811
Bommes, L., Pickel, T., Buerhop-Lutz, C., Hauch, J., Brabec, C., & Peters, I. M. (2021). Computer vision tool for detection, mapping, and fault classification of photovoltaics modules in aerial IR videos. Progress in Photovoltaics: Research and Applications, 29(12), 1236–1251. https://doi.org/10.1002/pip.3448
Cipriani, G., D’Amico, A., Guarino, S., Manno, D., Traverso, M., & Di Dio, V. (2020). Convolutional Neural Network for Dust and Hotspot Classification in PV Modules. Energies, 13(23), 6357. https://doi.org/10.3390/en13236357
Fonseca Alves, R. H., Deus Júnior, G. A., de, Marra, E. G., & Lemos, R. P. (2021). Automatic fault classification in photovoltaic modules using Convolutional Neural Networks. Renewable Energy, 179, 502–516. https://doi.org/10.1016/j.renene.2021.07.070
Grimaccia, F., Leva, S., Dolara, A., & Aghaei, M. (2017). Survey on PV Modules’ Common Faults After an O&M Flight Extensive Campaign Over Different Plants in Italy. IEEE Journal of Photovoltaics, 7(3), 810-816. https://doi.org/10.1109/jphotov.2017.2674977
Huerta Herraiz, Á., Pliego Marugán, A., & García Márquez, F. P. (2020). Photovoltaic plant condition monitoring using thermal images analysis by convolutional neural network-based structure. Renewable Energy, 153, 334–348. https://doi.org/10.1016/j.renene.2020.01.148
Hussain, T., Hussain, M., Al-Aqrabi, H., Alsboui, T., & Hill, R. (2023). A Review on Defect Detection of Electroluminescence-Based Photovoltaic Cell Surface Images Using Computer Vision. Energies, 16(10), 4012. https://doi.org/10.3390/en16104012
Hwang, H. P.-C., Ku, C. C.-Y., & Chan, J. C.-C. (2021). Detection of Malfunctioning Photovoltaic Modules Based on Machine Learning Algorithms. IEEE Access, 9, 37210–37219. https://doi.org/10.1109/ACCESS.2021.3063461
International electrotechnical commission. (2020). Photovoltaic (PV) systems - Requirements for testing, documentation and maintenance - Part 3: Photovoltaic modules and plants - Outdoor infrared thermography, IEC TS 62446-3:2017.
Kellil, N., Aissat, A., & Mellit, A. (2023). Fault diagnosis of photovoltaic modules using deep neural networks and infrared images under Algerian climatic conditions. Energy, 263, 125902. https://doi.org/10.1016/j.energy.2022.125902
Kirsten Vidal de Oliveira, A., Aghaei, M., & Rüther, R. (2020). Aerial infrared thermography for low-cost and fast fault detection in utility-scale PV power plants. Solar Energy, 211, 712–724. https://doi.org/10.1016/j.solener.2020.09.066
Lofstad-Lie, V., Marstein, E. S., Simonsen, A., & Skauli, T. (2022). Cost-Effective Flight Strategy for Aerial Thermography Inspection of Photovoltaic Power Plants. IEEE Journal of Photovoltaics, 12(6), 1543–1549. https://doi.org/10.1109/JPHOTOV.2022.3202072
Manno, D., Cipriani, G., Ciulla, G., Di Dio, V., Guarino, S., & Lo Brano, V. (2021). Deep learning strategies for automatic fault diagnosis in photovoltaic systems by thermographic images. Energy Conversion and Management, 241, 114315. https://doi.org/10.1016/j.enconman.2021.114315
Masita, K., Hasan, A., & Shongwe, T. (2022). 75MW AC PV Module Field Anomaly Detection Using Drone-Based IR Orthogonal Images With Res-CNN3 Detector. IEEE Access, 10, 83711–83722. https://doi.org/10.1109/ACCESS.2022.3194547
Mellit, A. (2022). An embedded solution for fault detection and diagnosis of photovoltaic modules using thermographic images and deep convolutional neural networks. Engineering Applications of Artificial Intelligence, 116, 105459. https://doi.org/10.1016/j.engappai.2022.105459
Nooralishahi, P., Ibarra-Castanedo, C., Deane, S., López, F., Pant, S., Genest, M., Avdelidis, N. P., & Maldague, X. P. V. (2021). Drone-Based Non-Destructive Inspection of Industrial Sites: A Review and Case Studies. Drones, 5(4), 106. https://doi.org/10.3390/drones5040106
Pejić Bach, M., Ivec, A., & Hrman, D. (2023a). Industrial Informatics: Emerging Trends and Applications in the Era of Big Data and AI. Electronics, 12(10), 2238. https://doi.org/10.3390/electronics12102238
Pejić Bach, M., Topalović, A., Krstić, Ž., & Ivec, A. (2023b). Predictive Maintenance in Industry 4.0 for the SMEs: A Decision Support System Case Study Using Open-Source Software. Designs, 7(4), 98. https://doi.org/10.3390/designs7040098
Sharma, V., & Chandel, S. S. (2013). Performance and degradation analysis for long term reliability of solar photovoltaic systems: A review. Renewable and Sustainable Energy Reviews, 27, 753–767. https://doi.org/10.1016/j.rser.2013.07.046
Zefri, Y., ElKettani, A., Sebari, I., & Ait Lamallam, S. (2018). Thermal Infrared and Visual Inspection of Photovoltaic Installations by UAV Photogrammetry—Application Case: Morocco. Drones, 2(4), 41. https://doi.org/10.3390/drones2040041
Zefri, Y., Sebari, I., Hajji, H., & Aniba, G. (2022). Developing a deep learning-based layer-3 solution for thermal infrared large-scale photovoltaic module inspection from orthorectified big UAV imagery data. International Journal of Applied Earth Observation and Geoinformation, 106, 102652. https://doi.org/10.1016/j.jag.2021.102652