Have a personal or library account? Click to login
A Machine Learning Approach to Forecast International Trade: The Case of Croatia Cover

A Machine Learning Approach to Forecast International Trade: The Case of Croatia

Open Access
|Dec 2022

References

  1. 1. Abirami, S. and Chitra, P. (2020), “Energy-efficient edge based real-time healthcare support system”. In Pethuru, R. and Preetha, E. (Eds.), The Digital Twin Paradigm for Smarter Systems and Environments: The Industry Use Cases, pp. 339-368.10.1016/bs.adcom.2019.09.007
  2. 2. Almog, A., Bird, R. and Garlaschelli, D. (2019), “Enhanced Gravity Model of Trade: Reconciling Macroeconomic and Network Models”, Frontiers in Physics, Vol. 7, pp. 1-17.10.3389/fphy.2019.00055
  3. 3. Arnerić, J., Poklepović, T., & Teai, J. W. (2018), “Neural network approach in forecasting realized variance using high-frequency data”. Business Systems Research: International journal of the Society for Advancing Innovation and Research in Economy, Vol. 9, No. 2, pp. 18-34.10.2478/bsrj-2018-0016
  4. 4. Batarseh, F. A., Gopinath, M. and Anderson, M. (2020), “Artificial Intelligence Methods for Evaluating Global Trade Flows”, International Finance Discussion Papers 1296. Washington: Board of Governors of the Federal Reserve System, available at: https://www.federalreserve.gov/econres/ifdp/files/ifdp1296.pdf (August 28, 2022)10.17016/IFDP.2020.1296
  5. 5. Batarseh, F. A., Gopinath, M., Nalluru, G. and Beckman, J. (2021), “Application of Machine Learning in Forecasting International Trade Trends”, available at: https://arxiv.org/abs/1910.03112 (August 28, 2022)
  6. 6. Baxter, G. and Srisaeng, P. (2018), “The use of an artificial neural network to predict Australia’s export air cargo demand”, International Journal for Traffic and Transport Engineering, Vol. 8, No.1, pp. 15-30.10.7708/ijtte.2018.8(1).02
  7. 7. Brownlee, J. (2019).”How To Use Regression Machine Learning Algorithms in Weka”, Available at: https://machinelearningmastery.com/use-regression-machine-learning-algorithms-weka/ (August 28, 2022)
  8. 8. CEPII (2021), GeoDist, available at: http://www.cepii.fr/cepii/en/bdd_modele/presentation.asp?id=6 (August 28, 2022)
  9. 9. Chan, E.M.H., Ho, DCK and Tsang, C.-W. (2021),” Estimating United States Asia Clothing Trade: Multiple Regression vs. Artificial Neural Networks”, Journal of Asian Finance, Economics and Business, Vol. 8, No. 7, pp. 403–411
  10. 10. Circlaeys, S., Kanitkar, C. and Kumazawa, D. (2017), “Bilateral Trade Flow Prediction”, available at: http://cs229.stanford.edu/proj2017/final-reports/5240224.pdf (August 28, 2022)
  11. 11. Ćorić, I. (2016), “Comparison of Multivariate Statistical Analysis and Machine Learning Methods in Retailing: Research Framework Proposition”, ENTRENOVA-ENTerprise REsearch InNOVAtion, Vol. 2, No. 1, pp. 32-38.
  12. 12. Data Science (2021), “Equation of a Multilayer Perceptron Network”, available at: https://datascience.stackexchange.com/questions/84016/equation-of-a-multi-layer-perceptron-network (August 28, 2022)
  13. 13. Dumor, K. and Yao, L. (2019), “Estimating China’s Trade with Its Partner Countries within the Belt and Road Initiative Using Neural Network Analysis”, Sustainability, Vol. 11, No. 5, pp. 1-22.10.3390/su11051449
  14. 14. Goldfarb, A. and Trefler, D. (2018), “Artificial Intelligence and International Trade, NBER Chapters”, in: The Economics of Artificial Intelligence: An Agenda, pp. 463-492, National Bureau of Economic Research, Inc.10.7208/chicago/9780226613475.003.0019
  15. 15. Gopinath, M. et al. (2021), “International agricultural trade forecasting using machine learning”, Data & Policy, Vol. 3, No.1, pp. 1-20.10.1017/dap.2020.22
  16. 16. Hall, M. A., Eibe, F., Witten, I. H. & Pal, C. J. (2011).” Data Mining: Practical Machine Learning Tools and Techniques”, Third Edition, Morgan Kaufman.
  17. 17. Kraser, M. (2018).”Gaussian Processes”, Available at: http://krasserm.github.io/2018/03/19/gaussian-processes/ (August 28, 2022)
  18. 18. Kulkarni, A. D. and More, A. (2016), „Formulation of a Prediction Index with the Help of WEKA Tool for Guiding the Stock Market Investors“, Oriental journal of Computer science & technology, Vol. 9, No.3, pp. 212-225.10.13005/ojcst/09.03.07
  19. 19. LeNail, (2019), “NN-SVG: Publication-Ready Neural Network Architecture Schematics”, Journal of Open Source Software, Vol. 4 No. 33, 747.10.21105/joss.00747
  20. 20. Lewis, C. D. (1982), “Industrial and Business Forecasting Methods”, Butterworths Publishing, London.
  21. 21. Medić, T., Bach, M. P., & Jaković, B. (2020, June). Stock market analysis and price prediction using deep learning and artificial neural networks. In Proceedings of FEB Zagreb International Odyssey Conference on Economics and Business Vol. 2, No. 1, pp. 450-462. University of Zagreb, Faculty of Economics and Business.
  22. 22. Menzies, T., Kocaguneli, E., Turhan, B., Minku, L. and Peters, F. (2014), “Sharing Data and Models in Software Engineering”, Morgan Kaufmann; 1st edition.10.1016/B978-0-12-417295-1.00001-1
  23. 23. Mitrea, C. A., Lee, C. K. M., & Wu, Z. (2009), “A comparison between neural networks and traditional forecasting methods: A case study”, International journal of engineering business management, Vol. 1, pp. 11.10.5772/6777
  24. 24. Nuroglu, E. (2012), “Estimating Trade Flows of Turkey Using Panel Data Analysis and Neural Networks”, available at: https://www.researchgate.net/publication/261001076_Estimating_Trade_Flows_of_Turkey_Using_Panel_Data_Analysis_and_Neural_Networks (August 28, 2022)
  25. 25. Nyoni, T. (2019). “Exports and imports in Zimbabwe: recent insights from artificial neural networks”, MPRA Paper 96906, University Library of Munich, Germany, available at: https://ideas.repec.org/p/pra/mprapa/96906.html (August 28, 2022)
  26. 26. Quimba, F. M. A. and Barral, M. A. A. (2018), “Exploring Neural Network Models in Understanding Bilateral Trade in APEC: A Review of History and Concepts”, Discussion Papers DP 2018-33, Philippine Institute for Development Studies.
  27. 27. Rasmussen, C. E. and Williams, C. K. I. (2006), “Gaussian Processes for Machine Learning”. MIT Press.10.7551/mitpress/3206.001.0001
  28. 28. Salama, M., Abdelkader, H., & Abdelwahab, A. (2022). A novel ensemble approach for heterogeneous data with active learning. International Journal of Engineering Business Management, Vol. 14, 18479790221082605.10.1177/18479790221082605
  29. 29. Trade Map (2021), Trade Map Index Page [Internet], available at: https://www.trademap.org/ (August 28, 2022)
  30. 30. University of Waikato (2021), “WEKA: The workbench for machine learning”, [Internet], available at: https://www.cs.waikato.ac.nz/ml/weka/ (August 28, 2022)
  31. 31. Wohl, I. and Kennedy, J. (2018), “Neural Network Analysis of International Trade”, Office of Industries, Working Paper ID-049, available at: https://www.usitc.gov/publications/332/working_papers/050218_neural.html (August 28, 2022)
  32. 32. World Bank (2021), “GDP (current US$)”, [Internet], available at: https://data.worldbank.org/indicator/NY.GDP.MKTP.CD (August 28, 2022)
  33. 33. World Trade Organization (2021), “Members and Observers”, [Internet], available at: https://www.wto.org/english/thewto_e/whatis_e/tif_e/org6_e.htm (August 28, 2022)
  34. 34. Vidya, C. T. and Prabheesh, K. P. (2020), “Implications of COVID-19 Pandemic on the Global Trade Networks”, Emerging Markets Finance and Trade, Vol. 56, No. 10, pp. 2408-242110.1080/1540496X.2020.1785426
  35. 35. Zekić-Sušac, M., Pfeifer, S., & Šarlija, N. (2014). A comparison of machine learning methods in a high-dimensional classification problem. Business Systems Research: International journal of the Society for Advancing Innovation and Research in Economy, Vol. 5, No. 3, pp. 82-96.10.2478/bsrj-2014-0021
  36. 36. Žmuk, B. and Jošić, H. (2020).”Forecasting stock market indices using machine learning algorithms”, Interdisciplinary Description of Complex Systems: INDECS, Vol.18, No.4, pp. 471-489.10.7906/indecs.18.4.7
DOI: https://doi.org/10.2478/bsrj-2022-0030 | Journal eISSN: 1847-9375 | Journal ISSN: 1847-8344
Language: English
Page range: 144 - 160
Submitted on: Jun 21, 2022
|
Accepted on: Nov 6, 2022
|
Published on: Dec 30, 2022
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Hrvoje Jošić, Berislav Žmuk, published by IRENET - Society for Advancing Innovation and Research in Economy
This work is licensed under the Creative Commons Attribution 4.0 License.