Have a personal or library account? Click to login

Customer-Centric Sales Forecasting Model: RFM-ARIMA Approach

Open Access
|Oct 2022

Abstract

Background: Decision makers use the process of determining the best course of action by processing, analysing & interpreting the data to gain insights, known as Business Intelligence. Some decision support systems use sales figures to predict future expansion, but few consider the effect of customer data.

Objectives: The main objective of this study is to build a model that will give a forecast based on fine-tuned sales numbers using some customer-centric features.

Methods/Approach: We first use the RFM model to segment the customers into distinct segments based on customer buying characteristics and then discard the segments that are irrelevant to the business. Then we use the ARIMA model to do the sales forecasting for the remainder of the data.

Results: Using this model, we were able to achieve a better fitment of the data for the prediction model and achieved a better accuracy when used after RFM analysis.

Conclusions: We tried to merge two different concepts to do a cross-functional analysis for better decision-making. We were able to present the RFM-ARIMA model as a better metric or approach to fine-tune the sales analysis.

DOI: https://doi.org/10.2478/bsrj-2022-0003 | Journal eISSN: 1847-9375 | Journal ISSN: 1847-8344
Language: English
Page range: 35 - 45
Submitted on: Dec 29, 2021
Accepted on: May 8, 2022
Published on: Oct 15, 2022
Published by: IRENET - Society for Advancing Innovation and Research in Economy
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2022 Sanket Tanaji Londhe, Sushila Palwe, published by IRENET - Society for Advancing Innovation and Research in Economy
This work is licensed under the Creative Commons Attribution 4.0 License.