Have a personal or library account? Click to login
Deep Learning Predictive Models for Terminal Call Rate Prediction during the Warranty Period Cover

Deep Learning Predictive Models for Terminal Call Rate Prediction during the Warranty Period

Open Access
|Oct 2020

References

  1. 1. Arnerić, J., Poklepović, T., Wen Teai, J. (2018), “Neural Network Approach in Forecasting Realized Variance Using High-Frequency Data”, Business Systems Research, Vol. 9, No. 2, pp. 18-34.10.2478/bsrj-2018-0016
  2. 2. Blischke, R., Murthy, P. (2000), Reliability: Modeling, Prediction, and Optimization, Wiley, New York.10.1002/9781118150481
  3. 3. Bohanec, M., Kljajić Borštnar, M., Robnik-Šikonja, M. (2017a), “Explaining machine learning predictions”, Expert Systems with Applications, Vol. 71, pp. 416-428.10.1016/j.eswa.2016.11.010
  4. 4. Bohanec, M., Robnik-Šikonja, M., Kljajić Borštnar, M. (2017b), “Decision-making framework with double-loop learning through interpretable black-box machine learning models”, Industrial Management & Data Systems, Vol. 117, No. 7, pp. 1389-1406.10.1108/IMDS-09-2016-0409
  5. 5. Bourcevet, A., Piller, G., Scholz, M., Wiesemann, J. (2019), “Guided machine learning for business users” in Pucihar, A. (Ed.), 32nd Bled eConference, Vol. 1, pp. 257-270.10.18690/978-961-286-280-0.14
  6. 6. Chan, J. (2007), “A predictive analytic model for value chain management”, Journal of International Technology and Information Management, Vol. 16, No. 1, pp. 31-42.10.58729/1941-6679.1186
  7. 7. Che, Z., Cheng, Y., Sun, Z., Liu, Y. (2017), “Exploiting convolutional neural network for risk prediction with medical feature embedding”, in NIPS 2016 Workshop on Machine Learning for Health, available at: https://arxiv.org/abs/1701.07474 (April 23, 2020)
  8. 8. Conejo, A. J., Plazas, M. A., Espinola, R., Molina, A. B. (2005), “Day-ahead electricity price forecasting using the wavelet transform and ARIMA Models”, IEEE Transactions on Power Systems, Vol. 20, No. 2, pp. 1035-1042.10.1109/TPWRS.2005.846054
  9. 9. Dai, A., Zhang, Z., Hou, P., Yue, J., He, S. & He, Z. (2019). “Warranty Claims Forecasting for New Products Sold with a Two-Dimensional Warranty”, Journal of Systems Science and Systems Engineering, Vol. 28, No. 2, pp. 715–730.10.1007/s11518-019-5434-8
  10. 10. De Gooijer, J. G., Hyndman, R. J. (2006), “25 years of time series forecasting”, International Journal of Forecasting, Vol. 22, No. 3, pp. 443-473.10.1016/j.ijforecast.2006.01.001
  11. 11. Ge, Z., Song, Z., Ding, S. X., Huang, B. (2017), “Data mining and analytics in the process industry: the role of machine learning”, IEEE Access, Vol. 5, pp. 20590-20616.10.1109/ACCESS.2017.2756872
  12. 12. Gujral, B., Kotthaus, M. C., Lakshmipathy, U., McNicoll, A., Cardona-Torres, R., Sandhu, R., Goedecke, M., Giselbrecht, K. (2019), “The role of computer simulation modeling in product/process optimization”, Monatshefte für Chemie - Chemical Monthly, Vol. 150, pp. 933-940.10.1007/s00706-019-02414-6
  13. 13. Hevner, A. R., March, S. T., Park, J., Ram, S. (2004), “Design science in information systems research”, MIS Quarterly, Vol. 28, No. 1, pp. 75-105.10.2307/25148625
  14. 14. Hinton, G. E. (2006), “Reducing the dimensionality of data with neural networks”, Science, Vol. 313, No. 5786, pp. 504-507.10.1126/science.1127647
  15. 15. Hyndman, R. J., Khandakar, Y. (2008), “Automatic time series forecasting: the forecast package for R”, Journal of Statistical Software, Vol. 27, No. 3, pp. 1-22.10.18637/jss.v027.i03
  16. 16. Ji, S., Xu, W., Yang, M., Yu, K. (2013), “3D convolutional neural networks for human action recognition”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 35, No. 1, pp. 221–231.10.1109/TPAMI.2012.59
  17. 17. Kljajić M., Bernik I., Škraba A. (2000), “Simulation approach to decision assessment in enterprises”, Simulation, Vol. 75, No. 4, pp. 199-210.10.1177/003754970007500402
  18. 18. Kofjač, D., Škraba, A., Brglez, A. (2014), “Warranty claims prediction with a combined model of market absorption and failure process”, International Journal of Computing Anticipatory Systems, Vol. 30, pp. 81-91.
  19. 19. Kofjač, D., Škraba, A., Mujanović, A. (2016), “Forecasting terminal call rate with machine learning methods”, in Pucihar, A. (Ed.), 29th Bled eConference, Vol. 1, pp. 503-514.
  20. 20. Kuremoto, T., Kimura, S., Kobayashi, K., Obayashi, M. (2014), “Time series forecasting using a deep belief network with restricted Boltzmann machines”, Neurocomputing, Vol. 137, pp. 47-56.10.1016/j.neucom.2013.03.047
  21. 21. Lawless, F. (1998), “Statistical analysis of product waranty data”, Internation Statistical Reviews, Vol. 66, pp. 41-60.10.1111/j.1751-5823.1998.tb00405.x
  22. 22. Li, G.-D., Masuda, S., Yamaguchi, D., Nagai, M. (2010), “A new reliability prediction model in manufacturing systems”, IEEE Transactions on Reliability, Vol. 59, No. 1, pp. 170-177.10.1109/TR.2009.2035795
  23. 23. Li, J., He, P., Zhu, J., Lyu, M. R. (2017), “Software defect prediction via convolutional neural network”, in 2017 IEEE International Conference on Software Quality, Reliability and Security (QRS), 25-29 July, IEEE, Prague, pp. 318-328.10.1109/QRS.2017.42
  24. 24. Maričić, M., Bulajić, M., Radojičić, Z., Jeremić, V. (2019), “Shedding Light on the Doing Business Index: a Machine Learning Approach”, Business Systems Research, Vol. 10, No. 2, pp. 73-84.10.2478/bsrj-2019-019
  25. 25. Murthy, P., Djamaludin, I. (2002), “New product warranty: a literature review”, International Journal of Production Economics, Vol. 79, pp. 231-260.10.1016/S0925-5273(02)00153-6
  26. 26. Nyhuis, P., von Cieminski, G., Fischer, A., Feldmann, K. (2005), “Applying simulation and analytical models for logistic performance prediction”, CIRP Annals, Vol. 54. No. 1, pp. 417-422.10.1016/S0007-8506(07)60135-8
  27. 27. Phaisangittisagul, E. (2016), “An analysis of the regularization between L2 and dropout in single hidden layer neural network”, in Al-Dabass, D., Achalakul, T., Prom-On, S., Sarochawikasit, R. (Eds.), 7th International Conference on Intelligent Systems, Modelling and Simulation (ISMS 2016), 25-27 January, IEEE, Bangkok, pp. 174-179.10.1109/ISMS.2016.14
  28. 28. Sašek, B. (2017), “Product failure prediction with deep learning methods”, available at: https://dk.um.si/IzpisGradiva.php?lang=slv&id=67936 (access date)
  29. 29. Shi, Z., Yao, W., Zeng, L., Wen, J., Fang, J., Ai, X., Wen, J. (2020), “Convolutional neural network-based power system transient stability assessment and instability mode prediction”, Applied Energy, Vol. 263, pp. 1-13.10.1016/j.apenergy.2020.114586
  30. 30. Škraba, A., Kljajić, M., Papler, P., Kofjač, D., Obed, M. (2011), “Determination of recruitment and transition strategies”, Kybernetes, Vol. 40, No. 9/10, pp. 1503-1522.10.1108/03684921111169512
  31. 31. Srivastava, N., Hinton, G.E., Krizhevsky, A., Sutskever, I., Salakhutdinov, R. (2014), “Dropout: a simple way to prevent neural networks from overfitting”, Journal of Machine Learning Research, Vol. 15, pp. 1929-1958.
  32. 32. Valipour, M., Banihabib, M. E., Behbahani, S. M. R. (2013), “Comparison of the ARMA, ARIMA, and the autoregressive artificial neural network models in forecasting the monthly inflow of Dez dam reservoir”, Journal of Hydrology, Vol. 476, pp. 433-441.10.1016/j.jhydrol.2012.11.017
  33. 33. Wirth, J., Hipp, J. (2000), “CRISP-DM: Towards a standard process model for data mining”, in 4th International Conference on the Practical Applications of Knowledge Discovery and Data Mining, 11-13 April, Practical Application Company, Manchester, pp. 29-40.
  34. 34. Wu, S., & Akbarov, A. (2011). “Support vector regression for warranty claim forecasting”, European Journal of Operational Research, Vol. 213, No. 1, pp. 196–204.10.1016/j.ejor.2011.03.009
  35. 35. Zhang, G. P. (2003), “Time series forecasting using a hybrid ARIMA and neural network model”, Neurocomputing, Vol. 50, pp. 159-175.10.1016/S0925-2312(01)00702-0
  36. 36. Zhang, J. (1993), “Performance study of Markov modulated fluid flow models with priority traffic”, in IEEE INFOCOM ‘93 The Conference on Computer Communications, 28 March-1 April, IEEE, San Francisco, Vol. 1, pp. 10-17.10.1109/INFCOM.1993.253254
DOI: https://doi.org/10.2478/bsrj-2020-0014 | Journal eISSN: 1847-9375 | Journal ISSN: 1847-8344
Language: English
Page range: 36 - 50
Submitted on: Apr 23, 2020
Accepted on: Jul 6, 2020
Published on: Oct 29, 2020
Published by: IRENET - Society for Advancing Innovation and Research in Economy
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Aljaž Ferencek, Davorin Kofjač, Andrej Škraba, Blaž Sašek, Mirjana Kljajić Borštnar, published by IRENET - Society for Advancing Innovation and Research in Economy
This work is licensed under the Creative Commons Attribution 4.0 License.