Have a personal or library account? Click to login
Forecasting Cinema Attendance at the Movie Show Level: Evidence from Poland Cover

Forecasting Cinema Attendance at the Movie Show Level: Evidence from Poland

Open Access
|Apr 2020

References

  1. 1. Ainslie, A., Drèze, X., Zufryden, F. (2005),” Modeling movie life cycles and market share“, Marketing Science, Vol. 24, No. 3, pp. 508-517.10.1287/mksc.1040.0106
  2. 2. Baranowski, P., Komor, M., Wójcik, S. (2018),” Whose feedback matters? Empirical evidence from online auctions “, Applied Economics Letters, Vol. 25, No. 17, pp. 1226–1229.10.1080/13504851.2017.1412070
  3. 3. Bloom, N. (2014),” Fluctuations in uncertainty”, Journal of Economic Perspectives, Vol. 28, No. 2, pp. 153-76.10.1257/jep.28.2.153
  4. 4. Bose, I., Mahapatra, R.K. (2001),” Business data mining—A machine learning perspective “, Information & Management, Vol. 39, No. 3, pp. 211–225.10.1016/S0378-7206(01)00091-X
  5. 5. Bukovina, J. (2016), “Social media big data and capital markets—An overview”, Journal of Behavioral and Experimental Finance, Vol. 11, pp. 18-26.10.1016/j.jbef.2016.06.002
  6. 6. Cameron, S. (1988),” The Impact of Video Recorders on Cinema Attendance“, Journal of Cultural Economics, Vol. 12, No. 1, pp. 73–80.10.1007/BF00220047
  7. 7. Cameron, S. (1999),” Rational addiction and the demand for cinema“, Applied Economics Letters, Vol. 6, No. 9, pp. 617-620.10.1080/135048599352736
  8. 8. Cameron, A.C., Trivedi, P.K. (2005),” Microeconometrics: Methods and applications “, Cambridge University Press.10.1017/CBO9780511811241
  9. 9. Casson, M. (2006),” Culture and economic performance“, in Ginsburg, V.A., Throsby, D. (Eds.), Handbook of the Economics of Art and Culture, 1, pp. 359–397.10.1016/S1574-0676(06)01012-X
  10. 10. Collins A., Hand, C. (2005),” Analyzing Moviegoing Demand: An Individual-level Cross-sectional Approach“, Managerial and Decision Economics, Vol. 26, No. 5, pp. 319–330.10.1002/mde.1231
  11. 11. Collins, A., Scorcu, A.E., Zanola, R. (2009),” Distribution Conventionality in the Movie Sector: An Econometric Analysis of Cinema Supply“, Managerial and Decision Economics, Vol. 30, No. 8, pp. 517–527.10.1002/mde.1469
  12. 12. Craig, C. S., Greene, W. H., Versaci, A. (2015), “E-word of mouth: Early predictor of audience engagement: How pre-release “e-WOM” drives box-office outcomes of movies“, Journal of Advertising Research, Vol. 55, No. 1, pp. 62-72.
  13. 13. Cuffe, H.E. (2018),” Rain and museum attendance: Are daily data fine enough?“, Journal of Cultural Economics, Vol. 42, No. 2, pp. 213–241.10.1007/s10824-017-9298-9
  14. 14. De Vany, A. (2003),” Hollywood economics: How extreme uncertainty shapes the film industry“, Routledge.10.4324/9780203489970
  15. 15. De Vany, A.S., Walls, W.D. (1999),” Uncertainty in the Movie Industry: Does Star Power Reduce the Terror of the Box Office? “, Journal of Cultural Economics, Vol. 23, No. 4, pp. 285–318.10.1023/A:1007608125988
  16. 16. Dellarocas, C., Zhang, X., Awad, N.F. (2007),” Exploring the value of online product reviews in forecasting sales: The case of motion pictures “, Journal of Interactive Marketing, Vol. 21, No. 4, pp. 23–45.10.1002/dir.20087
  17. 17. Dewenter, R., Westermann, M. (2005),” Cinema demand in Germany “, Journal of Cultural Economics, Vol. 29, No. 3, pp. 213–231.10.1007/s10824-005-6421-0
  18. 18. Ding, C., Cheng, H. K., Duan, Y., Jin, Y. (2017),” The power of the “like” button: The impact of social media on box office “, Decision Support Systems, Vol. 94, pp. 77-84.10.1016/j.dss.2016.11.002
  19. 19. Doury, N. (2001),” Successfully integrating cinemas into retail and leisure complexes: An operator’s perspective “, Journal of Retail & Leisure Property, Vol. 1, No. 2, pp. 119–126.10.1057/palgrave.rlp.5090113
  20. 20. Duan, W., Gu, B., Whinston, A.B. (2008),” Do online reviews matter? — An empirical investigation of panel data “, Decision Support Systems, Vol. 45, No. 4, pp. 1007–1016.10.1016/j.dss.2008.04.001
  21. 21. Feng, G. C. (2017), “The dynamics of the Chinese film industry: factors affecting Chinese audiences’ intentions to see movies“, Asia Pacific Business Review, Vol. 23, No. 5, pp. 658-676.10.1080/13602381.2017.1294353
  22. 22. Fu, W.W., Govindaraju, A. (2010), “Explaining global box-office tastes in Hollywood films: Homogenization of national audiences’ movie selections“, Communication Research, Vol. 37, No. 2, pp. 215–238.10.1177/0093650209356396
  23. 23. Goczek, Ł., Witkowski, B. (2016), “Determinants of card payments”, Applied Economics, Vol. 48, No. 16, pp. 1530-1543.10.1080/00036846.2015.1102846
  24. 24. Gmerek, N. (2015), “The determinants of Polish movies’ box office performance in Poland“, Journal of Marketing and Consumer Behaviour in Emerging Markets, Vol. 1, No. 1, pp. 15–35.10.7172/2449-6634.jmcbem.2015.1.2
  25. 25. Hand, C. (2002), “The Distribution and Predictability of Cinema Admissions“, Journal of Cultural Economics, Vol. 26, No. 1, pp. 53–64.10.1023/A:1013389211323
  26. 26. Hand, C., Judge, G. (2012), “Searching for the picture: Forecasting UK cinema admissions using Google Trends data“, Applied Economics Letters, Vol. 19, No. 11, pp. 1051–1055.10.1080/13504851.2011.613744
  27. 27. Hofmann-Stölting, C., Clement, M., Wu, S., Albers, S. (2017), “Sales forecasting of new entertainment media products”, Journal of Media Economics, Vol. 30, No. 3, pp. 143-171.10.1080/08997764.2018.1452746
  28. 28. Jansen, C. (2005), “The performance of German motion pictures, profits and subsidies: Some empirical evidence“, Journal of Cultural Economics, Vol. 29, No. 3, pp. 191-212.10.1007/s10824-005-1157-4
  29. 29. Jeffrey, D., Barden, R. R. (2001), “Multivariate models of hotel occupancy performance and their implications for hotel marketing”, International Journal of Tourism Research, Vol. 3, No. 1, pp. 33-44.10.1002/1522-1970(200101/02)3:1<33::AID-JTR291>3.0.CO;2-I
  30. 30. Jones, S.G. (1986),” Trends in the Leisure Industry since the Second World War “, The Service Industries Journal, Vol. 6, No. 3, pp. 330-348.10.1080/02642068600000042
  31. 31. Koçaş, C., Akkan, C. (2016), “A system for pricing the sales distribution from blockbusters to the long tail“, Decision Support Systems, Vol. 89, pp. 56-65.10.1016/j.dss.2016.06.008
  32. 32. Klinger, T., Lanzendorf, M. (2016), “Moving between mobility cultures: what affects the travel behavior of new residents?”, Transportation, Vol. 43, No. 2, pp. 243-271.10.1007/s11116-014-9574-x
  33. 33. Li, J. (2012), “From “D-Buffs” to the “D-Generation”: Piracy, Cinema, and An Alternative Public Sphere in Urban China“, International Journal of Communication, Vol. 6, pp. 542–563.
  34. 34. Litman, B.R. (1983), “Predicting the Success of Theatrical Movies: An Empirical Study“, Journal of Popular Culture, Vol. 16, pp. 159–175.10.1111/j.0022-3840.1983.1604_159.x
  35. 35. Luňáček, J., Feldbabel, V. (2014), “Elasticity of demand of the Czech consumer“, Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Vol. 59, No. 7, pp. 225–236.10.11118/actaun201159070225
  36. 36. Machowska, D. (2018), “Investigating the role of customer churn in the optimal allocation of offensive and defensive advertising: The case of the competitive growing market“, Economics and Business Review, Vol. 4, No. 2, pp. 3–23.10.18559/ebr.2018.2.1
  37. 37. MacMillan, P., Smith, I. (2001), “Explaining post-war cinema attendance in Great Britain“, Journal of Cultural Economics, Vol. 25, No. 2, pp. 91-108.10.1023/A:1007630400082
  38. 38. Makridakis, S., Hogarth, R. M., Gaba, A. (2009), “Forecasting and uncertainty in the economic and business world“, International Journal of Forecasting, Vol. 25, No. 4, pp. 794-812.10.1016/j.ijforecast.2009.05.012
  39. 39. Marshall, P., Dockendorff, M., Ibáñez, S. (2013), “A forecasting system for movie attendance“, Journal of Business Research, Vol. 66, pp. 1800–1806.10.1016/j.jbusres.2013.01.013
  40. 40. Moore, A. (2017), “Measuring economic uncertainty and its effects“, Economic Record, Vol. 93, No. 303, pp. 550-575.10.1111/1475-4932.12356
  41. 41. Nelson, R. A., Donihue, M. R., Waldman, D. M., Wheaton C. (2001), “What’s an Oscar worth?“, Economic Inquiry, Vol. 39, No. 1, pp. 1-16.10.1093/ei/39.1.1
  42. 42. Pautz, M. C. (2002), “The decline in average weekly cinema attendance, 1930-2000“, Issues in political economy, Vol. 11, pp. 1-19.
  43. 43. Sharda, R., Delen, D. (2006), “Predicting box-office success of motion pictures with neural networks“, Expert Systems with Applications, Vol. 30, No. 2, pp. 243–254.10.1016/j.eswa.2005.07.018
  44. 44. Sisto, A., Zanola, R. (2007), “Cinema and TV: An Empirical Investigation of Italian Consumers“, In Bianchi, M. (Ed.), The Evolution of Consumption: Theories and Practices (Advances in Austrian Economics, Volume 10), Emerald Group Publishing Limited, pp.139 – 154.10.1016/S1529-2134(07)10006-5
  45. 45. Sztaudynger, M. (2018), “Macroeconomic Factors and Consumer Loan Repayment”, Gospodarka Narodowa, Vol. 296, No. 4, pp. 155-177.10.33119/GN/102228
  46. 46. Treme, J., VanDerPloeg, Z. (2014), “The twitter effect: Social media usage as a contributor to movie success”, Economics Bulletin, Vol. 34, No. 2, pp. 793-809.
  47. 47. Treme, J., Craig, L.A., Copland, A. (2018), “Gender and box office performance“, Applied Economics Letters, Vol. 34, No. 4, pp. 1–5.
  48. 48. Walls, W.D. (2005), “Modeling Movie Success when ‘Nobody Knows Anything’: Conditional Stable-Distribution Analysis of Film Returns“, Journal of Cultural Economics, Vol. 29, pp. 177–190.10.1007/s10824-005-1156-5
  49. 49. Wayne, M.L. (2018), “Netflix, Amazon, and branded television content in subscription video on-demand portals“, Media, Culture & Society, Vol. 40, No. 5, pp. 725-741.10.1177/0163443717736118
  50. 50. Weziak-Bialowolska, D., Białowolski, P., Sacco, P. (2018), “Involvement With the Arts and Participation in Cultural Events-Does Personality Moderate Impact on Well-Being? Evidence from the U.K. Household Panel Survey“, Psychology of Aesthetics, Creativity, and the Arts, Vol. 13, No. 3, pp. 348-358.10.1037/aca0000180
  51. 51. Wu, Y., Huang, W., Lu, Y., Liu, J. (2018), “Box office forecasting for a cinema with movie and cinema attributes”, in IEEE 3rd International Conference on Cloud Computing and Big Data Analysis (ICCCBDA), IEEE, pp. 385-389.10.1109/ICCCBDA.2018.8386547
  52. 52. Yang, Z., Cai, J. (2016), “Do regional factors matter? Determinants of hotel industry performance in China“, Tourism Management, Vol. 52, pp. 242-253.10.1016/j.tourman.2015.06.024
  53. 53. Yu, X., Liu, Y., Huang, X., An, A. (2012), “Mining online reviews for predicting sales performance: A case study in the movie domain“, IEEE Transactions on Knowledge and Data engineering, Vol. 24, No. 4, pp. 720-734.10.1109/TKDE.2010.269
  54. 54. Yuan, H., Xu, W., Li, Q., Lau, R. (2018). “Topic sentiment mining for sales performance prediction in e-commerce”, Annals of Operations Research, Vol. 270, Issue 1-2, pp. 553-576.
DOI: https://doi.org/10.2478/bsrj-2020-0006 | Journal eISSN: 1847-9375 | Journal ISSN: 1847-8344
Language: English
Page range: 73 - 88
Submitted on: Jun 7, 2019
Accepted on: Dec 12, 2019
Published on: Apr 13, 2020
Published by: IRENET - Society for Advancing Innovation and Research in Economy
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2020 Paweł Baranowski, Karol Korczak, Jarosław Zając, published by IRENET - Society for Advancing Innovation and Research in Economy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.