Have a personal or library account? Click to login
Autonomous Sensor Data Cleaning in Stream Mining Setting Cover

Autonomous Sensor Data Cleaning in Stream Mining Setting

By: Klemen Kenda and  Dunja Mladenić  
Open Access
|Jul 2018

References

  1. 1. Al Quhtani, M. (2017), “Data Mining Usage in Corporate Information Security: Intrusion Detection Applications”, Business Systems Research, Vol. 8, No. 1, pp. 51-59.10.1515/bsrj-2017-0005
  2. 2. Belfo, F., Trigo, A., Estébanez, R. P. (2015), “Impact of ICT Innovative Momentum on Real-Time Accounting”, Business Systems Research, Vol. 6, No. 2, pp. 1-17.10.1515/bsrj-2015-0007
  3. 3. Breiman, L. (2001), “Random Forests”, Machine Learning, Vol. 45, No. 1, pp. 5-32.10.1023/A:1010933404324
  4. 4. Chen, C., Liu, L. (1993), “Joint Estimation of Model Parameters and Outlier Effects in Time Series”, Journal of the American Statistical Association, Vol. 88, No. 421, pp. 284-297.10.1080/01621459.1993.10594321
  5. 5. Chu, X., Ilyas, I. F., Krishnana, S., Wang, J. (2016), “Data cleaning: Overview and emerging challenges”, in Özcan, F., Koutrika, G. (Eds.), Proceedings of the 2016 International Conference on Management of Data, ACM, San Francisco, pp. 2201-2206.10.1145/2882903.2912574
  6. 6. Dempster, A. P., Laird, N. M., Rubin, N. M. (1977), “Maximum likelihood from incomplete data via the EM algorithm”, Journal of Royal Statistical Society Series B, Vol. 39, No. 1, pp. 1-38.10.1111/j.2517-6161.1977.tb01600.x
  7. 7. Fan, W., Bifet, A. (2013), “Mining big data: Current status, and forecast to the future”, ACM siGKDD Explorations Newsletter, Vol. 14, No. 2, pp. 1-5.10.1145/2481244.2481246
  8. 8. Kalman, R. E. (1960), “A new Approach to linear filtering and prediction problem”, Journal of basic engineering, Vol. 82, No. 1, pp. 34-45.10.1115/1.3662552
  9. 9. Kandel, S., Heer, J., Plaisant, C., Kennedy, J., van Ham, F., Riche, N.H., Weaver, C., Lee, B., Brodbeck, D., Buono, P. (2011), “Research directions in data wrangling: Visualizations and transformations for usable and credible data”, Information Visualization Journal, Vol. 10, No. 4, pp. 271-288.10.1177/1473871611415994
  10. 10. Kenda, K. (2017), Artificial data-set for testing time-series additive outlier detection methods, available at: https://www.researchgate.net/publication/317721142_Artificial_dataset_for_testing_time-series_additive_outlier_detecion_methods (18 February 2018).
  11. 11. Kenda, K., Mladenić, D. (2017), “Autonomous on-line outlier detection framework for streaming sensor data”, in Zadnik Strin, L., Kljajić Borštnar, M., Žerovnik, J., Drobne, S. (Eds.), Proceedings of the 14th International Symposium on Operational Research, Bled, pp. 103-108.
  12. 12. Kenda, K., Škrbec, J., Škrjanc, M. (2013). “Usage of Kalman Filter for Data Cleaning of Sensor Data”, in Gams, M. (Ed.), Proceedings of the 16th International Multiconference Information Society - IS 2013, Ljubljana, pp. 172-175.
  13. 13. Krempl, G., Žliobaite, I., Brzezinski, D., Hüllenmeier, E., Last., M., Lemaire, V., Noack, T., Shaker, A., Sievi, S., Spiliopolou, M. (2014), “Open challenges for data stream mining research”, ACM siGKDD Explorations Newsletter, Vol. 16, No. 1, pp. 1-10.10.1145/2674026.2674028
  14. 14. Krishnan, S., Wang. J., Wu, E., Franklin, M. J., Goldberg, K. (2016), “ActiveClean: interactive data cleaning for statistical modeling”, in Chaudhuri, S., Haritsa, J. (Eds.), Proceedings of the VLDB Endowment, Vol. 9, No. 12, pp. 948-959.10.14778/2994509.2994514
  15. 15. Marczak, M., Proietti, T., Grassi, S. (2018), “A data-cleaning augmented Kalman filter for robust estimation of state space models”, Econometrics and Statistics, Vol. 5, pp. 107-123.10.1016/j.ecosta.2017.02.002
  16. 16. Press, G. (2016), “Cleaning Big Data: Most Time-Consuming, Least Enjoyable Data Science Task, Survey Says”, available at: https://www.forbes.com/sites/suntrustprivatewealth/2017/12/21/wealth-transfer-are-yousure-your-beneficiaries-are-prepared/ (31 January 2018).
  17. 17. Shearer, C. (2000), “The CRISP-DM model: the new blueprint for data mining”, Journal of data warehousing, Vol. 5, No. 4, pp. 13-22.
  18. 18. Xu, S. (2015), “Data Cleaning and Knowledge Discovery in Process Data”, PhD thesis, University of Texas, Austin.
  19. 19. Yahoo! Webscope (2015), “S5 - A Labeled Anomaly Detection Dataset, version 1.0”, available at: http://research.yahoo.com/Academic_Relations (28 February 2018).
  20. 20. Zekić-Sušac, M., Has, A. (2015), “Data Mining as Support to Knowledge Management in Marketing”, Business Systems Research Journal, Vol. 6, No. 2, pp. 18-30.10.1515/bsrj-2015-0008
DOI: https://doi.org/10.2478/bsrj-2018-0020 | Journal eISSN: 1847-9375 | Journal ISSN: 1847-8344
Language: English
Page range: 69 - 79
Submitted on: Jan 31, 2018
Accepted on: Apr 21, 2018
Published on: Jul 28, 2018
Published by: IRENET - Society for Advancing Innovation and Research in Economy
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2018 Klemen Kenda, Dunja Mladenić, published by IRENET - Society for Advancing Innovation and Research in Economy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.