Have a personal or library account? Click to login
A Comparison of Machine Learning Methods in a High-Dimensional Classification Problem Cover

A Comparison of Machine Learning Methods in a High-Dimensional Classification Problem

Open Access
|Sep 2014

References

  1. 1. Apte, C., Weiss, S.(1997), “Data Mining with Decision Trees and Decision Rules”, Future Generation Computer Systems , Vol. 13, No.2, pp. 197-210.10.1016/S0167-739X(97)00021-6
  2. 2. Behzad, M., Asghar, K., Eazi, M., Palhang, M. (2009), „Generalization performance of support vector machines and neural networks in runoff modeling“, Expert Systems with Applications, Vol. 36, No.4, pp. 7624-7629.10.1016/j.eswa.2008.09.053
  3. 3. Bensic, M., Sarlija, N., Zekic-Susac, M. (2005), „Modeling Small Business Credit Scoring Using Logistic Regression, Neural Networks, and Decision Trees“, Intelligent Systems in Accounting, Finance and Management, Vol. 13, No. 3, pp. 133-150.10.1002/isaf.261
  4. 4. Bishop, C. (1995), Neural Networks for Pattern Recognition, University Press, Oxford, UK.10.1201/9781420050646.ptb6
  5. 5. Bolivar-Cime, A., Marron, J.S. (2013), “Comparison of binary discrimination methods for high dimension low sample size data”, Journal of Multivariate Analysis, Vol. 115, No. 1, pp. 108-12110.1016/j.jmva.2012.10.001
  6. 6. Brown, D.E., Corruble, V., Pittard, C.L. (1993). “A comparison of decision tree classifiers with backpropagation neural networks for multimodal classification problems”, Pattern Recognition, Vol. 26, No. 6, pp. 953-961.
  7. 7. Carr, J.C., Sequeira, J.M. (2007), “Prior family business exposure as intergenerational entrepreneurial intent: A theory of planned behavior approach”, Journal of Business Research, Vol. 60, No.10, pp.1090-1098.10.1016/j.jbusres.2006.12.016
  8. 8. Dai, Y-H. (2002), “Convergence properties of the BFGS algorithm“, SIAM Journal of Optimization, Vol. 13, No. 3, pp. 693-701.10.1137/S1052623401383455
  9. 9. Farmer, S.M., X. Yao., Kung-Mcintyre, K. (2011), “The behavioral impact of entrepreneur identity aspiration and prior entrepreneurial experience”, Entrepreneurship Theory and Practice, Vo. 35, No. 2, pp. 245-273.10.1111/j.1540-6520.2009.00358.x
  10. 10. Haykin, S. (1999), Neural Networks: A Comprehensive Foundation, Prentice Hall International, Inc., New Jersey, USA.
  11. 11. Kolvereid, L., Isaksen, E. (2006), “New business start-up and subsequent entry into self-employment”, Journal of Business Venturing, Vol. 21, No.6, pp. 866-885.10.1016/j.jbusvent.2005.06.008
  12. 12. Krueger, N.F. Jr. (2000), “The Cognitive Infrastructure of Opportunity Emergence”, Entrepreneurship: Theory and Practice, Vol. 24, No. 3, pp. 5-23.
  13. 13. Krueger, N.F. JR., Reilly, M.D., Carsrud, A.L. (2000), “Competing Models of Entrepreneurial Intentions”, Journal of Business Venturing, Vol. 15, No.5, pp. 411-432.10.1016/S0883-9026(98)00033-0
  14. 14. Kuzey, C., Uyar, A., Delen, D. (2014), “The impact of multinationality on firm value: A comparative analysis of machine learning techniques”, Decision Support Systems, Vol. 59, No. 1, pp. 127-142.10.1016/j.dss.2013.11.001
  15. 15. Lee, S.(2010), “Using data envelopment analysis and decision trees for efficiency analysis and recommendation of B2C controls”, Decision Support Systems, Vol. 49, No.4, pp. 486-497.10.1016/j.dss.2010.06.002
  16. 16. Lin, W.B. (2006), „A comparative study on the trends of entrepreneurial behaviors of enterprises in different strategies: Application of the social cognition theory“, Expert Systems with Applications, Vol. 31, No.2, pp. 207-220.10.1016/j.eswa.2005.09.036
  17. 17. Liu, G., Yi, Z., Yang, S. (2007), „A hierarchical intrusion detection model based on the PCA neural networks“, Neurocomputing, Vol. 70, No.7, pp. 1561-1568.10.1016/j.neucom.2006.10.146
  18. 18. Masters, T. (1995), Advanced Algorithms for Neural Networks, A C++ Sourcebook, John Wiley & Sons, Inc., New York, USA.
  19. 19. McGee, J., Peterson, M., Mueller, S., Sequeira, J.M. (2009), “Entrepreneurial selfefficacy: Refining the measure and examining its relationship to attitudes toward venturing and nascent entrepreneurship”, Entrepreneurship Theory and Practice, Vol. 33, No.4, pp. 965-988.10.1111/j.1540-6520.2009.00304.x
  20. 20. Min, J.H., Lee, Y.-C. (2005), „Bankruptcy prediction using support vector machine with optimal choice of kernel function parameters“, Expert Systems with Applications, Vol. 28, No. 4, pp. 603-614.10.1016/j.eswa.2004.12.008
  21. 21. Nga, J.K.H., Shamuganathan, G. (2010), “The influence of personality traits and demographic factors on social entrepreneurship start up intentions”, Journal of Business Ethics, Vol. 95, No.2, pp. 259-282.10.1007/s10551-009-0358-8
  22. 22. Paliwal, M., Kumar, U.A. (2009), “Neural networks and statistical techniques: A review of applications”, Expert Systems with Applications, Vol. 36, No.1, pp. 2-17.10.1016/j.eswa.2007.10.005
  23. 23. Questier, F., Put, R., Coomans, D., Walczak, B., Vander Heyden, Y. (2005), “The use of CART and multivariate regression trees for supervised and unsupervised feature selection”, Chemometrics and Intelligent Laboratory Systems, Vol. 76, No.1, pp. 45-54.10.1016/j.chemolab.2004.09.003
  24. 24. Shao, Y., Lunetta, R.S. (2012), “Comparison of support vector machine, neural network, and CART algorithms for the land-cover classification using limited training data points”, ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 70, June 2012, pp. 78-87.10.1016/j.isprsjprs.2012.04.001
  25. 25. Shin, H.J., Eom, D.-H., Kim, S.S. (2005), “One-class support vector machines - an application in machine fault detection and classification“, Computers & Industrial Engineering, Vol. 48, No.2, pp. 395-408.10.1016/j.cie.2005.01.009
  26. 26. Simon, D. and Boring, J.R.(1990), “Sensitivity, Specificity, and Predictive Value”, in Walker, H.K., Hall, W.D., Hurst, J.W. (Eds.), Clinical Methods: The History, Physical, and Laboratory Examinations, Butterworths, Boston, pp. 49-54.
  27. 27. Smith, T.W. (2009), Altruism and Empathy in America: Trends and Correlates, National Opinion Research Center, University of Chicago, Chicago.
  28. 28. St. John, C.H., Balakrishnan, N., Fiet, J.O. (2000), „Modeling the relationship between corporate strategy and wealth creation using neural networks“, Computers & Operations Research, Vol. 27, No. 11, pp. 1077-1092.10.1016/S0305-0548(99)00143-4
  29. 29. Talukder, A., Casasent, D. (2001), “A closed-form neural network for discriminatory feature extraction from high-dimensional data”, Neural Networks, Vol. 14, No. 9, pp. 1201-1218.10.1016/S0893-6080(01)00103-4
  30. 30. Thompson, E.R. (2009), “Individual entrepreneurial intent: Construct clarification and development of an internationally reliable metric”, Entrepreneurship Theory and Practice, Vol. 33, No. 3, pp. 669-694.10.1111/j.1540-6520.2009.00321.x
  31. 31. Triandis, H.C., Gelfand, M.J. (1998), “Converging Measurement of Horizontal and Vertical Individualism and Collectivism”, Journal of Personality and Social Psychology, Vol. 74, No.1, pp.118-128.10.1037/0022-3514.74.1.118
  32. 32. Witten, I.H., Frank, E. (2000), Data Mining: Practical Machine Learning Tools and Techniques with Java Implementation, Morgan Kaufman Publishers, San Francisco.
  33. 33. Yeh, C.C, et al. (2010), „A hybrid approach of DEA, rough set and support vector machines for business failure prediction”, Expert Systems with Applications, Vol. 37, No.2, pp. 1535-1541.10.1016/j.eswa.2009.06.088
  34. 34. Yu, H., Yang, J., Han, J. (2003),„Classifying Large Data Sets Using SVMs with Hierarchical Clustering“, in Proceedings of the ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM New York, NY, USA, pp. 306-315.10.1145/956750.956786
  35. 35. Zanaty, E.A. (2012), “Support Vector Machines (SVMs) versus Multilayer Perception (MLP) in data classification”, Egyptian Informatics Journal, Vol. 13, No. 3, pp. 177-183.10.1016/j.eij.2012.08.002
  36. 36. Zekic-Susac, M., Pfeifer, S., Djurdjevic, I. (2010), „Classification of entrepreneurial intentions by neural networks, decision trees and support vector machines“, Croatian Operational Research Review, Vol. 1, No.1, pp. 62-71.
  37. 37. Zekic-Susac, M., Šarlija, N., Pfeifer, S. (2012), „Combining PCA analysis and neural networks in modelling entrepreneurial intentions of students“, Croatian Operational Research Review, Vol. 4, No.1, pp. 306-317.
DOI: https://doi.org/10.2478/bsrj-2014-0021 | Journal eISSN: 1847-9375 | Journal ISSN: 1847-8344
Language: English
Page range: 82 - 96
Submitted on: Dec 15, 2013
|
Accepted on: May 18, 2014
|
Published on: Sep 25, 2014
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2014 Marijana Zekić-Sušac, Sanja Pfeifer, Nataša Šarlija, published by IRENET - Society for Advancing Innovation and Research in Economy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.