Have a personal or library account? Click to login
Inability of Gearing-Ratio as Predictor for Early Warning Systems Cover

Inability of Gearing-Ratio as Predictor for Early Warning Systems

By: Mario Situm  
Open Access
|Sep 2014

References

  1. 1. Ansoff, H. I., Sullivan, P. A. (1993), “Optimizing profitability in turbulent environment: A formula for strategic success”, Long Range Planning, Vol. 26, No. 5, pp. 11-23.10.1016/0024-6301(93)90073-O
  2. 2. Altman, E. I., Sabato, G., Wilson, N. (2010), “The value of non-financial information in small and medium-sized enterprise risk management”, The Journal of Credit Risk, Vol. 6, No. 2, pp. 1-33.10.21314/JCR.2010.110
  3. 3. Altman, E. I., Haldeman, R. G., Narayanan, P. (1977), “ZETATM Analysis: A new model to identify bankruptcy risk of corporations”, Journal of Banking and Finance, Vol. 1, No. 1, pp. 29-54.10.1016/0378-4266(77)90017-6
  4. 4. Altman, E. I. (1968), “Financial ratios, discriminant analysis and the prediction of corporate bankruptcy”, The Journal of Finance, Vol. 23, No. 4, pp. 589-609.10.1111/j.1540-6261.1968.tb00843.x
  5. 5. Anandarajan, M., Lee, P., Anandarajan, A. (2001), “Bankruptcy prediction of financially stressed firms: An examination of the predictive accuracy of artificial neural networks”, International Journal of Intelligent Systems in Accounting, Finance & Management, Vol. 10, No. 2, pp. 69-81.10.1002/isaf.199
  6. 6. Barniv, R., McDonald, J. B. (1992), “Identifying financial distress in the insurance industry: A synthesis of methodological and empirical issues”, The Journal of Risk and Insurance, Vol. 59, No. 4, pp. 543 - 573.10.2307/253344
  7. 7. Barniv, R., Raveh, A. (1989), “Identifying financial distress: A new nonparametric approach”, Journal of Business Finance & Accounting, Vol. 16, No. 3, pp. 361-383.10.1111/j.1468-5957.1989.tb00024.x
  8. 8. Beaver, W. H. (1966), “Financial ratios as predictors of failure”, Journal of Accounting Research, Vol. 4, pp. 71-111.10.2307/2490171
  9. 9. Begley, J., Ming, J., Watts, S. (1996), “Bankruptcy classification errors in the 1980s: An empirical analysis of Altman’s and Ohlson’s models”, Review of Accounting Studies, Vol. 1, No. 4, pp. 267-284.10.1007/BF00570833
  10. 10. Boritz, J. E., Kennedy, D. B., de Miranda e Albuquerque, A. M. (1995), “Predicting corporate failure using a neural network approach”, Intelligent Systems in Accounting, Finance and Management, Vol. 4, No. 2, pp. 95-111.10.1002/j.1099-1174.1995.tb00083.x
  11. 11. Brouthers, K. D., Roozen, F. A. (1999), “Is it time to start thinking about strategic accounting?” Long Range Planning, Vol. 32, No. 3, pp. 311-322.10.1016/S0024-6301(99)00035-7
  12. 12. Casey, C., Bartczak, N. (1985), “Using operating cash flow data to predict financial distress: Some extensions”, Journal of Accounting Research, Vol. 23, No. 1, pp. 384-401.10.2307/2490926
  13. 13. Charitou, A., Neophytou, E., Charalambous, C. (2004), “Predicting corporate failure: Empirical evidence for the UK”, European Accounting Review, Vol. 13, No. 3, pp. 465-497.10.1080/0963818042000216811
  14. 14. Chava, S., Jarrow, R. A. (2004), “Bankruptcy prediction with industry effects”, Review of Finance, Vol. 8, No. 4, pp. 537-569.10.1093/rof/8.4.537
  15. 15. Chen, J., Marshall, B. R., Zhang, J., Ganesh, S. (2006), “Financial distress prediction in China”, Review of Pacific Basin Financial Markets and Policies, Vol. 9, No. 2, pp. 317-336.10.1142/S0219091506000744
  16. 16. Chen, W. S., Du, Y. K. (2009), “Using neural networks and data mining techniques for the financial distress prediction model”, Expert Systems with Applications, Vol. 36, No. 2, pp. 4075-4086.10.1016/j.eswa.2008.03.020
  17. 17. Chi, L. C., Tang, T. C. (2006), “Bankruptcy prediction: Application of logit analysis in export credit risks”, Australian Journal of Management, Vol. 31, No. 1, pp. 17-27.10.1177/031289620603100102
  18. 18. Creditreform Wirtschaftsforschung Austria (2011), “Insolvenzen in Europa: Jahr 2010/11”, available at: http://www.creditreform.at/fileadmin/user_upload/Oesterreich/Downloads/Insolv enz/Insolvenzen_in_Europa_2010.pdf (13 January 2014).
  19. 19. Dambolena, I. G., Khoury, S. J. (1980), “Ratio stability and corporate failure”, The Journal of Finance, Vol. 35, No. 4, pp. 1017-1026.10.1111/j.1540-6261.1980.tb03517.x
  20. 20. Dietrich, J., Arcelus, F. J., Srinivasan, G. (2005), “Predicting financial failure: Some evidence from New Brunswick agricultural co-ops”, Annals of Public and Cooperative Economics, Vol. 76, No. 2, pp. 179-194.10.1111/j.1370-4788.2005.00275.x
  21. 21. Du Jardin, P. (2009), “Bankruptcy prediction models: How to choose the most relevant variables?”, Bankers, Markets & Investors, No. 98, pp. 39-46.
  22. 22. Edmister, R. O. (1972), „An empirical test of financial ratio analysis for small business failure prediction”, Journal of Financial and Quantitative Analysis, Vol. 7, No. 2, pp. 1477-1493.10.2307/2329929
  23. 23. Exler, M. W., Situm, M. (2014), „Indikatoren zur Früherkennung von Unternehmenskrisen in der Beraterpraxis: Ansatzpunkte zur Etablierung eines internen Frühwarnsystems”, Krisen-, Sanierungs- und Insolvenzberatung, Vol. 10, No. 2, pp. 53-59.
  24. 24. Exler, M. W., Situm, M. (2013), “Früherkennung von Unternehmenskrisen: Systematische Einteilung von Krisenfrüherkennungsindikatoren zu den unterschiedlichen Krisenphasen eines Unternehmens”, Krisen-, Sanierungs- und Insolvenzberatung, Vol. 9, No. 4, pp. 161-166.
  25. 25. Fanning, K. M., Cogger, K. O. (1994), “A comparative analysis of artificial neural networks using financial distress prediction”, Intelligent Systems in Accounting, Finance and Management, Vol. 3, No. 4, pp. 241-252.10.1002/j.1099-1174.1994.tb00068.x
  26. 26. Fawcett, T. (2006), “An introduction to ROC analysis”, Pattern Recognition Letters, Vol. 27, No. 8, pp. 861-874.10.1016/j.patrec.2005.10.010
  27. 27. Frydman, H., Altman, E. I., Kao, D. L. (1985), “Introducing recursive partitioning for financial classification: The case of financial distress”, The Journal of Finance, Vol. 40, No. 1, pp. 269-291.10.1111/j.1540-6261.1985.tb04949.x
  28. 28. Gepp, A., Kumar, K. (2008), “The role of survival analysis in financial distress prediction”, International Research Journal of Finance and Economics, Vol. 16, pp. 13-34.
  29. 29. Gombola, M. J., Haskins, M. E., Ketz, E. J., Williams, D. D. (1987), “Cash flow in bankruptcy prediction”, Financial Management, Vol. 16, No. 4, pp. 55-65.10.2307/3666109
  30. 30. Grunert, J., Norden, L., Weber, M. (2005), “The role of non-financial factors in internal credit ratings”, Journal of Banking & Finance, Vol. 29, No. 2, pp. 509-531.10.1016/j.jbankfin.2004.05.017
  31. 31. Hackbarth, D., Miao, J., Morellec, E. (2006), “Capital structure, credit risk, and macroeconomic conditions”, Journal of Financial Economics, Vol. 82, pp. 519–550.10.1016/j.jfineco.2005.10.003
  32. 32. Hauser, R. P., Booth, D. (2011), “Predicting bankruptcy with robust logistic regression”, Journal of Data Science, Vol. 9, pp. 565-584.10.6339/JDS.201110_09(4).0006
  33. 33. Hennessy, C. A., Whited, T. M. (2005), “Debt dynamics”, The Journal of Finance, Vol. 60, No 3, pp. 1129-1165.10.1111/j.1540-6261.2005.00758.x
  34. 34. Hopwood, W., McKeown, J., Mutchler, J. (1988), “The sensitivity of financial distress prediction models to departures from normality”, Contemporary Accounting Research, Vol. 5, No. 1, pp. 284-298.10.1111/j.1911-3846.1988.tb00706.x
  35. 35. Houghton, K. A., Woodliff, D. R. (1987), “Financial ratios: The prediction of corporate ‘success’ and failure”, Journal of Business Finance & Accounting, Vol. 14, No. 4, pp. 537-554.10.1111/j.1468-5957.1987.tb00111.x
  36. 36. Hwang, R. C., Cheng, K. F., Lee, J. C. (2007), “A semiparametric method for predicting bankruptcy”, Journal of Forecasting, Vol. 26, No. 5, pp. 317-342.10.1002/for.1027
  37. 37. Keasey, K., Watson, R. (1991), “Financial distress prediction models: A review of their usefulness”, British Journal of Management, Vol. 2, No. 2, pp. 89-102.10.1111/j.1467-8551.1991.tb00019.x
  38. 38. lazzolino, G., Migliano, G., Gregorace, E. (2013), “Evaluating intellectual capital for supporting credit risk assessment: An empirical study”, Investment Management and Financial Innovations, Vol. 10, No. 2, pp. 44-54.
  39. 39. Jones, S., Hensher, D. A. (2004), “Predicting firm financial distress: A mixed logit model”, The Accounting Review, Vol. 79, No. 4, pp. 1011-1038.10.2308/accr.2004.79.4.1011
  40. 40. Klecka, W. R. (1980). “Discriminant analysis”, Newbury Park: Sage.10.4135/9781412983938
  41. 41. Laitinen, E. K., Laitinen, T. (2000), “Bankruptcy prediction: Application of the Taylor’s expansion in logistic regression”, International Review of Financial Analysis, Vol. 9, No. 4, pp. 327-349.10.1016/S1057-5219(00)00039-9
  42. 42. Lau, A. H. L. (1987), “A five-state financial distress prediction model”, Journal of Accounting Research, Vol. 25, No. 1, pp. 127-138.10.2307/2491262
  43. 43. Leland, H. E., Toft, K. B. (1996), “Optimal capital structure, endogenous bankruptcy, and the term structure of credit spreads”, The Journal of Finance, Vol. 51, No. 3, pp. 987-1019.10.1111/j.1540-6261.1996.tb02714.x
  44. 44. Li, H., Sun, J. (2011), “Predicting business failure using forward ranking-order case-based reasoning”, Expert Systems with Applications, Vol. 38, No. 4, pp. 3075-3084.10.1016/j.eswa.2010.08.098
  45. 45. Lin, F., Liang, D., Chen, E. (2011), “Financial ratio selection for business crisis prediction”, Expert Systems with Applications, Vol. 38, No. 12, pp. 15094-15102.10.1016/j.eswa.2011.05.035
  46. 46. Liou, D. K., Smith, M. (2007), “Macroeconomic variables and financial distress”, Journal of Accounting, Business & Management, Vol. 14, pp. 17-31.
  47. 47. Madrid-Guijarro, A., Garcia-Pèrez-de-Lema, D., van Auken, H. (2011), “An analysis of non-financial factors associated with financial distress”, Entrepreneurship & Regional Development, Vol. 23, No. 3-4, pp. 159-186.10.1080/08985620903233911
  48. 48. Muller, G. H., Steyn-Bruwer, B. W., Hamman, W. D. (2009), “Predicting financial distress of companies listed on JSE - A comparison of techniques”, South African Journal of Business & Management, Vol. 40, No. 1, pp. 21-32.10.4102/sajbm.v40i1.532
  49. 49. Müller-Stewens, G. (2007). “Früherkennungssysteme”, in Köhler, R., Küpper, H. U., Pfingsten, A. (ed.), „Handwörterbuch der Betriebswirtschaft”, Schaeffer-Pöschl, Stuttgart, pp. 558-580.
  50. 50. Nam, C. W. et al. (2008), “Bankruptcy prediction using a discrete-time duration model incorporating temporal macroeconomic dependencies”, Journal of Forecasting, Vol. 27, No. 6, pp. 493-506.10.1002/for.985
  51. 51. Neves, J. C., Vieira, A. (2006), “Improving bankruptcy prediction with hidden layer learning vector quantization”, European Accounting Review, Vol. 15, No, 2, pp. 253-271.10.1080/09638180600555016
  52. 52. Ohlson, J. A. (1980), “Financial ratios and the probabilistic prediction of bankruptcy”, Journal of Accounting Research, Vol. 18, No. 1, pp. 109-131.10.2307/2490395
  53. 53. Ooghe, H., Spaenjers, C. (2009), “A note on performance measures for business failure prediction models”, Applied Economics Letter, Vol. 17, No. 1, pp. 67-70.10.1080/13504850701719769
  54. 54. Pacey, J. W., Pham, T. M. (1990), “The predictiveness of bankruptcy models: Methodological problems and evidence”, Australian Journal of Management, Vol. 15, No. 2, pp. 315-337.10.1177/031289629001500206
  55. 55. Pervan, I., Kuvek, T. (2013), “The relative importance of financial ratios and nonfinancial variables in predicting of insolvency”, Croatian Operational Research Review, Vol. 4, No. 1, pp. 187-198.
  56. 56. Pervan, I., Pervan, M., Vukoja, B. (2011), “Prediction of company bankruptcy using statistical techniques - Case of Croatia”, Croatian Operational Research Review, Vol. 2, No. 1, pp. 158-167.
  57. 57. Pervan, M., Visic, J. (2012), “Influence of firm size on its business success”, Croatian Operational Research Review, Vol. 3, No. 1, pp. 213-223.
  58. 58. Platt, H. D., Platt, M. B. (2002), “Predicting corporate financial distress: Reflections on choice-based sample bias”, Journal of Economics and Finance, Vol. 26, No. 2, pp. 184-199.10.1007/BF02755985
  59. 59. Pohar, M., Blas, M., Turk, S. (2004), “Comparison of logistic regression and linear discriminant analysis: A simulation study”, Metdološki Zvezki, Vol. 1, No. 1, pp. 143–161.10.51936/ayrt6204
  60. 60. Pompe, P. P. M., Bilderbeek, J. (2005), “Bankruptcy prediction: The influence of the year prior to failure selected for model building and the effects in a period of economic decline”, Intelligent Systems in Accounting, Finance and Management, Vol. 13, No. 2, pp. 95-112.10.1002/isaf.259
  61. 61. Prasad, D., Puri, Y. R. (2005), “Does combining alternate bankruptcy prediction models improve forecasting accuracy?”, The International Journal of Finance, Vol. 17, No. 3, pp. 3581-3602.
  62. 62. Press, J. S., Wilson, S. (1978), “Choosing between logistic regression and discriminant analysis”, Journal of American Statistical Association, Vol. 73, No. 364, pp. 699-705.10.1080/01621459.1978.10480080
  63. 63. Pretorius, M. (2008), “Critical variables of business failure: A review and classification framework”, South African Journal of Economic and Management Sciences, Vol. 11, No. 4, pp. 408-430.
  64. 64. Saunders, A., Cornett, M. (2011). “Financial institutions management: A risk management approach”, 7th edition, New York: Mc-Graw-Hill.
  65. 65. Schmidt, R., Terberger, E. (1996). „Grundzüge der Investitions- und Finanzierungstheorie”, 3rd edition, Wiesbaden: Gabler.10.1007/978-3-663-14776-3
  66. 66. Sharma, D. S. (2001), “The role of cash flow information in predicting corporate failure: The state of the literature”, Managerial Finance, Vol. 27, No. 4, pp. 3-28.10.1108/03074350110767114
  67. 67. Silva, A. P. D., Stam, A., Neter, J. (2002), “The effects of misclassification costs and skewed distributions in two-group classification”, Communications in Statistics -Simulation and Computation, Vol. 31, No. 3, pp. 401-423.10.1081/SAC-120003849
  68. 68. Skogsvik, K., Skogsvik, S. (2013), “On the choice based sample bias in probabilistic bankruptcy prediction”, Investment Management and Financial Innovations, Vol. 10, No. 1, pp. 29-37.
  69. 69. Subhash, S. (1996). “Applied multivariate techniques”, New York: John Wiley & Sons.
  70. 70. Thomas, L. C., Edelman, D. B., Crook, J. N. (2002). “Credit scoring and its applications”, Philadelphia: Society for Industrial and Applied Mathematics.10.1137/1.9780898718317
  71. 71. Tsai, B. H. (2013), “An early warning system of financial distress using multinomial logit models and a bootstrapping approach”, Emerging Markets Finance & Trade, Vol. 49, No. 2, pp. 43-69.10.2753/REE1540-496X4902S203
  72. 72. Yim, J., Mitchell, H. E. (2007), “Predicting financial distress in the Australian financial service industry”, Australian Economic Papers, Vol. 46, No. 4, pp. 375-388.10.1111/j.1467-8454.2007.00326.x
  73. 73. Zenzerovic, R. (2011), “Credit scoring models in estimating the creditworthiness of small and medium and big enterprises”, Croatian Operational Research Review, Vol. 2, No. 1, pp. 143-157.
  74. 74. Zmijewski, M. E. (1984), “Methodological issues related to the estimation of financial distress prediction models”, Journal of Accounting Research, Vol. 22, pp. 59-82.10.2307/2490859
DOI: https://doi.org/10.2478/bsrj-2014-0008 | Journal eISSN: 1847-9375 | Journal ISSN: 1847-8344
Language: English
Page range: 23 - 45
Submitted on: Feb 2, 2014
|
Accepted on: May 18, 2014
|
Published on: Sep 10, 2014
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2014 Mario Situm, published by IRENET - Society for Advancing Innovation and Research in Economy
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.