Have a personal or library account? Click to login

A Simple Discrete Approximation for the Renewal Function

Open Access
|May 2013

References

  1. 1. Ayhan H., Limon-Robles, J., Wortman M. A. (1999), „An approach for computing tight numerical bounds on renewal functions”, IEEE Transactions on Reliability, Vol. 48 No. 2, pp. 182-188. 10.1109/24.784278
  2. 2. Barlow, R. E., Proschan, F., Hunter, L. C. (1996). Mathematical Theory of Reliability, Philadelphia, SIAM. 10.1137/1.9781611971194
  3. 3. Barouch, E., Kaufman, G. M. (1976), „On Sums of Lognormal Random Variables”. Working paper, Alfred P. Sloan School of Management, Cambridge, Massachusetts, available at http://dspace.mit.edu/bitstream/handle/1721.1/48703/onsumsoflognorma00baro.pdf / (10 June 2011).
  4. 4. Bebbington, M., Davydov, Y., Zitikis, R. (2007), „Estimating the renewal function when the second moment is infinite”, Stochastic Models, Vol. 23 No.1, pp. 27 - 48. 10.1080/15326340601141851
  5. 5. Beichelt, F. (2006). Stochastic Processes in Science, Engineering And Finance, Boca Raton, Chapman & Hall/CRC. 10.1201/9781420010459
  6. 6. Brezavšček, A. (2011), „Simple Stochastic Model for Planning the Inventory of Spare Components Subject to Wear-out”, Organizacija, Vol. 44 No. 4, pp. 120 - 127. 10.2478/v10051-011-0012-y
  7. 7. Chaudhry, M. L. (1995), „On computations of the mean and variance of the number of renewals: a unified approach”, The Journal of the Operational Research Society, Vol. 46 No. 11, pp. 1352-1364. 10.1057/jors.1995.183
  8. 8. Cox, D. R. (1970). Renewal Theory, London & Colchester: Methuen.
  9. 9. Cui, L., Xie, M. (2003), „Some normal approximations for renewal function of large Weibull shape parameter”, Communications in Statistics - Simulation and Computation, Vol. 32 No. 1, pp. 1-16. 10.1081/SAC-120013107
  10. 10. Garg, A., Kalagnanam, J. R. (1998), „Approximations for the renewal function”, IEEE Transactions on Reliability, Vol. 47 No. 1, pp. 66-72. 10.1109/24.690909
  11. 11. Gertsbakh, I. (2000). Reliability Theory, With Applications to Preventive Maintenance, Berlin: Springer Verglag.
  12. 12. Hu, X. (2006), „Approximation of partial distribution in renewal function calculation”, Computational Statistics & Data Analysis, Vol. 50 No. 6, pp. 1615-1624. 10.1016/j.csda.2005.01.004
  13. 13. Jardine, A. K. S. (1973). Maintenance, Replacement, and Reliability, London, Pitman.
  14. 14. Jardine, A. K. S., Tsang, A. H. C. (2006). Maintenance, Replacement, and Reliability: Theory and Applications, Boca Raton, CRC/Taylor & Francis. 10.1201/9781420044614
  15. 15. Jiang, R. (2008), „A Gamma-normal series truncation approximation for computing the Weibull renewal function”, Reliability Engineering & System Safety, Vol. 93 No. 4, pp. 616- 626. 10.1016/j.ress.2007.03.026
  16. 16. Jiang, R. (2010), „A simple approximation for the renewal function with an increasing failure rate”, Reliability Engineering & System Safety, Vol. 95 No. 9, pp. 963-969. 10.1016/j.ress.2010.04.007
  17. 17. Johnson, N. L, Kotz, S., Balakrishnan, N. (1994), Continuous Univariate Distributions, Volumes I and II, 2nd. Ed., New York: John Wiley and Sons.
  18. 18. Kottegoda, N. T., Rosso, R. (1997). Statistics, Probability, and Reliability for Civil and Environmental Engineers, New York: McGraw-Hill.
  19. 19. Lam, C. L. J., Le-Ngoc, T. (2006), „Estimation of typical sum of lognormal random variables using log shifted gamma approximation”, IEEE Communications Letters, Vol. 10 No. 4, pp. 234- 235. 10.1109/LCOMM.2006.1613731
  20. 20. Nakagawa, T. (2011). Stochastic Processes: with Applications to Reliability Theory, London: Springer-Verlag. 10.1007/978-0-85729-274-2
  21. 21. O'Connor, A. N. (2011). Probability Distributions Used in Reliability Engineering, Maryland: RIAC.
  22. 22. Politis, K., Koutras, M. V. (2006), „Some new bounds for the renewal function”, Probability in the Engineering and Informational Sciences, Vol. 20 No. 2, pp. 231 - 250. 10.1017/S0269964806060141
  23. 23. Rinne, H. (2009). The Weibull Distribution: A Handbook, New York: CRC Press, Taylor & Francis Group.
  24. 24. Robinson, N. I. (1997), „Renewal functions as series”, Stochastic Models, Vol. 13 No. 3, pp. 577- 604. 10.1080/15326349708807440
  25. 25. Romeo, M., Da Costa, V., Bardou, F. (2003), „Broad distribution effects in sums of lognormal random variables”, The European Physical Journal B - Condensed Matter and Complex Systems, Vol. 32 No. 4, pp. 513-525. 10.1140/epjb/e2003-00131-6
  26. 26. Sheikh, A. K., Younas, M. (1985), “Renewal Models in Reliability Engineering”, in Deopker, P. E. (Ed.), Failure and Prevention and Reliability, ASME, pp. 93-103.
  27. 27. Smeitink, E., Dekker, R. (1990), „A simple approximation to the renewal function”, IEEE Transactions on Reliability, Vol. 39 No. 1, pp. 71-75. 10.1109/24.52614
  28. 28. Tijms, H. C. (2003). A First Course in Stochastic Models, Chichester: John Wiley & Sons. 10.1002/047001363X
  29. 29. van Noortwijk, J. M., van der Weide, J. A. M. (2008), „Applications to continuous-time processes of computational techniques for discrete-time renewal processes”, Reliability Engineering & System Safety, Vol. 93 No. 12, pp. 1853-1860. 10.1016/j.ress.2008.03.023
DOI: https://doi.org/10.2478/bsrj-2013-0006 | Journal eISSN: 1847-9375 | Journal ISSN: 1847-8344
Language: English
Page range: 65 - 75
Published on: May 14, 2013
Published by: IRENET - Society for Advancing Innovation and Research in Economy
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2013 Alenka Brezavšček, published by IRENET - Society for Advancing Innovation and Research in Economy
This work is licensed under the Creative Commons License.