1. Ayhan H., Limon-Robles, J., Wortman M. A. (1999), „An approach for computing tight numerical bounds on renewal functions”, IEEE Transactions on Reliability, Vol. 48 No. 2, pp. 182-188. 10.1109/24.784278
3. Barouch, E., Kaufman, G. M. (1976), „On Sums of Lognormal Random Variables”. Working paper, Alfred P. Sloan School of Management, Cambridge, Massachusetts, available at http://dspace.mit.edu/bitstream/handle/1721.1/48703/onsumsoflognorma00baro.pdf / (10 June 2011).
4. Bebbington, M., Davydov, Y., Zitikis, R. (2007), „Estimating the renewal function when the second moment is infinite”, Stochastic Models, Vol. 23 No.1, pp. 27 - 48. 10.1080/15326340601141851
6. Brezavšček, A. (2011), „Simple Stochastic Model for Planning the Inventory of Spare Components Subject to Wear-out”, Organizacija, Vol. 44 No. 4, pp. 120 - 127. 10.2478/v10051-011-0012-y
7. Chaudhry, M. L. (1995), „On computations of the mean and variance of the number of renewals: a unified approach”, The Journal of the Operational Research Society, Vol. 46 No. 11, pp. 1352-1364. 10.1057/jors.1995.183
9. Cui, L., Xie, M. (2003), „Some normal approximations for renewal function of large Weibull shape parameter”, Communications in Statistics - Simulation and Computation, Vol. 32 No. 1, pp. 1-16. 10.1081/SAC-120013107
10. Garg, A., Kalagnanam, J. R. (1998), „Approximations for the renewal function”, IEEE Transactions on Reliability, Vol. 47 No. 1, pp. 66-72. 10.1109/24.690909
12. Hu, X. (2006), „Approximation of partial distribution in renewal function calculation”, Computational Statistics & Data Analysis, Vol. 50 No. 6, pp. 1615-1624. 10.1016/j.csda.2005.01.004
14. Jardine, A. K. S., Tsang, A. H. C. (2006). Maintenance, Replacement, and Reliability: Theory and Applications, Boca Raton, CRC/Taylor & Francis. 10.1201/9781420044614
15. Jiang, R. (2008), „A Gamma-normal series truncation approximation for computing the Weibull renewal function”, Reliability Engineering & System Safety, Vol. 93 No. 4, pp. 616- 626. 10.1016/j.ress.2007.03.026
16. Jiang, R. (2010), „A simple approximation for the renewal function with an increasing failure rate”, Reliability Engineering & System Safety, Vol. 95 No. 9, pp. 963-969. 10.1016/j.ress.2010.04.007
19. Lam, C. L. J., Le-Ngoc, T. (2006), „Estimation of typical sum of lognormal random variables using log shifted gamma approximation”, IEEE Communications Letters, Vol. 10 No. 4, pp. 234- 235. 10.1109/LCOMM.2006.1613731
22. Politis, K., Koutras, M. V. (2006), „Some new bounds for the renewal function”, Probability in the Engineering and Informational Sciences, Vol. 20 No. 2, pp. 231 - 250. 10.1017/S0269964806060141
25. Romeo, M., Da Costa, V., Bardou, F. (2003), „Broad distribution effects in sums of lognormal random variables”, The European Physical Journal B - Condensed Matter and Complex Systems, Vol. 32 No. 4, pp. 513-525. 10.1140/epjb/e2003-00131-6
26. Sheikh, A. K., Younas, M. (1985), “Renewal Models in Reliability Engineering”, in Deopker, P. E. (Ed.), Failure and Prevention and Reliability, ASME, pp. 93-103.
27. Smeitink, E., Dekker, R. (1990), „A simple approximation to the renewal function”, IEEE Transactions on Reliability, Vol. 39 No. 1, pp. 71-75. 10.1109/24.52614
29. van Noortwijk, J. M., van der Weide, J. A. M. (2008), „Applications to continuous-time processes of computational techniques for discrete-time renewal processes”, Reliability Engineering & System Safety, Vol. 93 No. 12, pp. 1853-1860. 10.1016/j.ress.2008.03.023