Have a personal or library account? Click to login
Negative Prompts and the Affective Economies of Failure in Visual Generative AI Systems Cover

Negative Prompts and the Affective Economies of Failure in Visual Generative AI Systems

Open Access
|Dec 2025

References

  1. Adorno, T., & Horkheimer, M. (1944). The Culture Industry: Enlightenment as Mass Deception.
  2. Ahmed, S. (2004). Affective Economies. Social Text, 22(2), 117–139. https://doi.org/10.1215/01642472-22-2_79-117.
  3. Ahmed, S. (2010). The Promise of Happiness. Duke University Press. https://doi.org/10.2307/j.ctv125jkj2.
  4. Amoore, L. (2019). Doubt and the Algorithm: On the Partial Accounts of Machine Learning. Theory, Culture & Society, 36(6), 147–169. https://doi.org/10.1177/0263276419851846.
  5. Amoore, L. (2020). Cloud ethics: Algorithms and the attributes of ourselves and others. Duke University Press.
  6. Ananny, M. (2023). Making Mistakes: Constructing Algorithmic Errors to Understand Sociotechnical Power. Osiris, 38, 223–241. https://doi.org/10.1086/725146.
  7. Appadurai, A., & Alexander, N. (2020). Failure. Polity press.
  8. Armandpour, M., Sadeghian, A., Zheng, H., Sadeghian, A., & Zhou, M. (2023). Re-imagine the Negative Prompt Algorithm: Transform 2D Diffusion into 3D, alleviate Janus problem and Beyond (Version 3). arXiv. https://doi.org/10.48550/ARXIV.2304.04968.
  9. Ballatore, A., & Natale, S. (2023). Technological failures, controversies and the myth of AI. In S. Lindgren (Ed.), Handbook of Critical Studies of Artificial Intelligence (pp. 237–244). Edward Elgar Publishing. https://doi.org/10.4337/9781803928562.00026.
  10. Ban, Y., Wang, R., Zhou, T., Cheng, M., Gong, B., & Hsieh, C.-J. (2024). Understanding the Impact of Negative Prompts: When and How Do They Take Effect? (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2406.02965.
  11. Barassi, V. (2024). Toward a Theory of AI Errors: Making Sense of Hallucinations, Catastrophic Failures, and the Fallacy of Generative AI. Harvard Data Science Review, Special Issue 5. https://doi.org/10.1162/99608f92.ad8ebbd4.
  12. Benjamin, R. (2019). Race after technology: Abolitionist tools for the New Jim Code. Polity.
  13. Berlant, L. (2011). Cruel Optimism. Duke University Press. https://doi.org/10.2307/j.ctv1220p4w.
  14. Broussard, M. (2023). More than a glitch: Confronting race, gender, and ability bias in tech. The MIT Press.
  15. Chesher, C., & Albarrán-Torres, C. (2023). The emergence of autolography: The ‘magical’ invocation of images from text through AI. Media International Australia, 189(1), 57–73. https://doi.org/10.1177/1329878X231193252
  16. Chun, W. H. K. (2008). On “Sourcery,” or Code as Fetish. Configurations, 16(3), 299–324. https://doi.org/10.1353/con.0.0064.
  17. Chun, W. H. K. (2016). Updating to remain the same: Habitual new media. The MIT Press.
  18. Cohen, H. (1979). What is an image. International Joint Conference on Artificial Intelligence. https://api.semanticscholar.org/CorpusID:62789816.
  19. Dhariwal, P., & Nichol, A. (2021). Diffusion Models Beat GANs on Image Synthesis (Version 4). arXiv. https://doi.org/10.48550/ARXIV.2105.05233.
  20. Du, Y., Li, S., & Mordatch, I. (2020). Compositional Visual Generation and Inference with Energy Based Models (Version 3). arXiv. https://doi.org/10.48550/ARXIV.2004.06030.
  21. Feuerriegel, S., Hartmann, J., Janiesch, C., & Zschech, P. (2024). Generative AI. Business & Information Systems Engineering, 66(1), 111–126. https://doi.org/10.1007/s12599-023-00834-7.
  22. Galanter, P. (2016). Generative Art Theory. In C. Paul (Ed.), A Companion to Digital Art (1st ed., pp. 146–180). Wiley. https://doi.org/10.1002/9781118475249.ch5.
  23. Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., & Bengio, Y. (2014). Generative Adversarial Networks (Version 1). arXiv. https://doi.org/10.48550/ARXIV.1406.2661.
  24. Graham, S., & Thrift, N. (2007). Out of Order: Understanding Repair and Maintenance. Theory, Culture & Society, 24(3), 1–25. https://doi.org/10.1177/0263276407075954.
  25. Koulischer, F., Deleu, J., Raya, G., Demeester, T., & Ambrogioni, L. (2024). Dynamic Negative Guidance of Diffusion Models (Version 3). arXiv. https://doi.org/10.48550/ARXIV.2410.14398.
  26. Larsson, S., & Viktorelius, M. (2024). Reducing the contingency of the world: Magic, oracles, and machine-learning technology. AI & SOCIETY, 39(1), 183–193. https://doi.org/10.1007/s00146-022-01394-2.
  27. Lotringer, S., & Virilio, P. (2005). The accident of art. Semiotexte.
  28. Mansimov, E., Parisotto, E., Ba, J. L., & Salakhutdinov, R. (2015). Generating Images from Captions with Attention (Version 2). arXiv. https://doi.org/10.48550/ARXIV.1511.02793.
  29. Morozov, E. (2014). To save everything, click here: The folly of technological solutionism (Paperback 1. publ). PublicAffairs.
  30. Noble, S. U. (2018). Algorithms of oppression: How search engines reinforce racism. New York university press.
  31. Oppenlaender, J. (2024). The Cultivated Practices of Text-to-Image Generation. In R. Rousi, C. Von Koskull, & V. Roto (Eds.), Humane Autonomous Technology (pp. 325–349). Springer International Publishing. https://doi.org/10.1007/978-3-031-66528-8_14.
  32. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2021). High-Resolution Image Synthesis with Latent Diffusion Models (Version 2). arXiv. https://doi.org/10.48550/ARXIV.2112.10752.
  33. Ronge, R., Maier, M., & Rathgeber, B. (2025). Towards a Definition of Generative Artificial Intelligence. Philosophy & Technology, 38(1), 31. https://doi.org/10.1007/s13347-025-00863-y.
  34. Simon, H. A., & Newell, A. (1971). Human problem solving: The state of the theory in 1970. American Psychologist, 26(2), 145–159. https://doi.org/10.1037/h0030806.
  35. Wachter-Boettcher, S. (2017). Technically wrong: Sexist apps, biased algorithms, and other threats of toxic tech (First edition). W.W. Norton & Company.
  36. Weizenbaum, J. (1966). ELIZA – a computer program for the study of natural language communication between man and machine. Communications of the ACM, 9(1), 36–45. https://doi.org/10.1145/365153.365168.
Language: English
Page range: 50 - 65
Published on: Dec 23, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Cheeru Padma, M Shuaib Mohamed Haneef, published by Tallinn University Baltic Film, Media, Arts and Communication School
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.