References
- Tsoutsos T., Frantzeskaki N., Gekas V., Environmental impacts from the solar energy technologies, Energy Policy, vol. 33, pag. 289-296, 2005.
- Mekhilef S., Saidur R., Safari A., A review on solar energy use in industries, Renewable & Sustainable Energy Reviews, vol. 15, pag. 1777-1790, 2011.
- Mehmood U., Hussein I.A., Harrabi K., Tabet N., Berdiyorov G.R., Enhanced photovoltaic performance with co-sensitization of a ruthenium(II) sensitizer and an organic dye in dye-sensitized solar cells, RSC Advanced, vol. 6, pag. 7897-7901, 2016.
- Płaczek-Popko, E., Top PV market solar cells 2016, Opto-Electronics Review, vol. 25, pag. 55–64, 2017.
- Yoo, B., Kim, K., Lee, S.H., Kim, W.M., Park, N.-G., ITO/ATO/TiO2 triple-layered transparent conducting substrates for dye-sensitized solar cells, Solar Energy Materials and Solar Cells, vol. 92, nr. 8, pag. 873-877, 2008.
- Pai, A. R., Nair, B. G., Synthesis and characterization of a binary oxide ZrO2-TiO2 and its application in chlorophyll dye-sensitized solar cell with reduced graphene oxide as counter electrodes, Bulletin of Materials Science, vol. 38, pag. 1129-1133, 2015.
- Kay, A., Gratzel, M., Artificial photosynthesis. 1. Photosensitization of TiO2 solar cells with chlorophyll derivatives and related natural porphyrins, The Journal of Physical Chemistry A, vol. 97, pag. 6272-6277, 1993.
- Kamat, P.V., Chauvet, J.P., Fessenden, R.W., Photoelectrochemistry in particulate systems. 4. Photosensitization of a TiO2 semiconductor with a chlorophyll analogue, The Journal of Physical Chemistry A, vol. 90, pag. 1389-1394, 1986.
- Amao, Y., Komori, T., Bio-photovoltaic conversion device using chlorine-e6 derived from chlorophyll from Spirulina adsorbed on a nanocrystalline TiO2 film electrode, Biosensors and Bioelectronics, vol. 19, pag. 843-847, 2004.
- Wang, X.F., Crupi, V., Guo, X.L., Zhao, Y.G., Quantitative Thermographic Methodology for fatigue assessment and stress measurement, International Journal of Fatigue, vol. 32, nr. 12, pag. 1970-1976, 2010.
- Wang, X.F., Matsuda, A., Koyama, Y., Nagae, H., Sasaki, S., H. Tamiaki, Wada, Y., Effects of plant carotenoid spacers on the performance of a dye-sensitized solar cell using a chlorophyll derivative: enhancement of photocurrent determined by one electron-oxidation potential of each carotenoid, Chemical Physics Letters, vol. 423, pag. 470-475, 2006.
- Wang, X.F., Kitao, O., Hosono, E., Zhou, H., Sasaki, S., Tamiaki, H., TiO2- and ZnO-based solar cells using a chlorophyll a derivative sensitizer for lightharvesting and energy conversion, The Journal of Physical Chemistry A, vol. 210, pag. 145-152, 2010.
- Ruta, L.L., Farcasanu, I.C., Anthocyanins and anthocyanin-derived products in yeastfermented beverages, Antioxidants, vol. 8, nr. 6, art. nr. 182, 2019.
- Patel, K., Jain, A., Patel, D.K., Medicinal significance, pharmacological activities, and analytical aspects of anthocyanidins ‘delphinidin’: A concise report, Journal of Acute Disease, vol. 2, nr. 3, pag. 169-178, 2013.
- Pinto, A.L., Cruz, L., Gomes, V., Cruz, H., Calogero, G., de Freitas, V., Pina, F., Parola, A.J., Carlos Lima, J., Catechol versus carboxyl linkage impact on DSSC performance of synthetic pyranoflavylium salts, Dyes and Pigments, vol. 170, art. nr. 107577, 2019.
- Zikri, A.D., Gunlazuardi, J., Preparation of a TiO2-based dye-sensitized solar cell comprising anthocyanin from mangosteen pericarp (Garcinia mangostana L.) as the sensitizer: co-pigmentation effect on sensitizer and solar cell efficiency, Journal of Physics: Conference Series, vol. 1442, art. nr. 12062, 2020.
- Hardeli, H., Zainul, R., Isara, L.P., Preparation of Dye Sensitized Solar Cell (DSSC) using anthocyanin color dyes from jengkol shell (Pithecellobium lobatum Benth.) by the gallate acid copigmentation, Journal of Physics: Conference Series, art. nr. 12021, 2019.
- Diaz-Uribe, C., Vallejo, W., Camargo, G., Muñoz-Acevedo, A., Quiñones, C., Schott, E., Zarate, X., Potential use of an anthocyanin-rich extract from berries of Vaccinium meridionale Swartz as sensitizer for TiO2 thin films-an experimental and theoretical study, Journal of Photochemistry and Photobiology A: Chemistry, vol. 384, art. nr. 112050, 2019.
- Knorr, F.J., McHale, J.L., Clark, A.E., Marchioro, A., Moser, J.E., Dynamics of interfacial electron transfer from betanin to nanocrystalline TiO2: the pursuit of two-electron injection, The Journal of Physical Chemistry C, vol. 119, pag. 19030–19041, 2015.
- Damayanti, Z.H., Anindika, G.R., Santoso, E., Akhlus, S., Kusumawati, Y., The electronic properties study of betanin and their derivatives compound: an explanation to betanin limitation in DSSC application, AIP Conference Proceedings, vol. 2237, art. nr. 020068, 2020.
- Nazeeruddin, M.K., Kay, A., Rodicio, I., Humphry-Baker, R., Muller, E., Liska, P., Vlachopoulos, N., Gratzel, M., Conversion of Light to Electricity by Cis-X2bis(2,2’-bipyridyl-4,4’-dicarboxylate) ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes, Journal of the American Chemical Society, vol. 115, pag. 6382-6390, 1993.
- Kay, A., Gratzel, M., Artificial photosynthesis. 1. Photosensitization of TiO2 solar cells with chlorophyll derivatives and related natural porphyrins, The Journal of Physical Chemistry A, vol. 97, pag. 6272-6277, 1993.
- Kamat, P.V., Chauvet, J.P., Fessenden, R.W., Photoelectrochemistry in particulate systems. 4. Photosensitization of a TiO2 semiconductor with a chlorophyll analogue, The Journal of Physical Chemistry A, vol. 90, pag. 1389-1394, 1986.
- Amao, Y., Komori, T., Bio-photovoltaic conversion device using chlorine-e6 derived from chlorophyll from Spirulina adsorbed on a nanocrystalline TiO2 film electrode, Biosensors and Bioelectronics, vol. 19, pag. 843-847, 2004.
- Wang, X.F., Crupi, V., Guo, X.L., Zhao, Y.G., Quantitative Thermographic Methodology for fatigue assessment and stress measurement, International Journal of Fatigue, vol. 32, nr. 12, pag. 1970-1976, 2010.
- Wang, X.F., Kitao, O., Hosono, E., Zhou, H., Sasaki, S., Tamiaki, H., TiO2- and ZnO-based solar cells using a chlorophyll a derivative sensitizer for lightharvesting and energy conversion, The Journal of Physical Chemistry A, vol. 210, pag. 145-152, 2010.
- Yella, A., Lee, H.W., Tsao, H.N., Yi, C., Chandiran, A.K., Nazeeruddin, M.K., Diau, E.W., Yeh, C.Y., Zakeeruddin, S.M., Grätzel, M., Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12% efficiency, Science, vol. 334, pag 629-634, 2011.
- Khoo H.E., Azlan A., Tang S.T., Lim S.M., Anthocyanidins and anthocyanins: colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food & Nutrition Research, 61(1):1361779, 2017.
- C.D. Nenițescu, Chimie Organică, Vol. II, Ed. Didactică și Pedagogică București, p 673, 1974.
- Chiba, Y. et al., Dye-sensitized solar cells with conversion efficiency of 11.1%, Japanese Journal of Applied Physics, vol.45, pag. 24-28, 2006.
- Ronca, E., Marotta, G., Pastore, M., De Angelis, F., Effect of sensitizer structure and TiO2 protonation on charge generation in dye-sensitized solar cells, The Journal of Physical Chemistry C, vol. 118, pag. 16927-16940, 2014.
- Griffith, M. J., Mozer, A. J., Porphyrin based dye sensitized solar cells, Solar Cells - Dye-Sensitized Devices, Editura InTech, pag. 373-398, 2011.
- Kosyachenko, L.A., Solar Cells-Dye-Sensitized Devices, Editura InTech, 2011.
- Nazeeruddin, M.K., Kay, A., Rodicio, I., Humphry-Baker, R., Muller, E., Liska, P., Vlachopoulos, N., Gratzel, M., Conversion of Light to Electricity by Cis-X2bis(2,2’-bipyridyl-4,4’-dicarboxylate) ruthenium(II) Charge-Transfer Sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on Nanocrystalline Titanium Dioxide Electrodes, Journal of the American Chemical Society, vol. 115, pag. 6382-6390, 1993.
- Nazeeruddin, M. K., Zakeeruddin, S. M., Humphry-Baker, R., Jirousek, M., Liska, P., Vlachopoulos, N., Shklover, V., Fischer, C.-H., Grätzel, M., Acid-base equilibria of (2, 2’-bipyridyl-4, 4’-dicarboxylic acid) ruthenium (II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania, Inorganic Chemistry, vol. 38, nr. 26, pag. 6298-6305, 1999.
- Hagberg, D. P., Edvinsson, T., Marinado, T., Boschloo, G., Hagfeldt, A., Sun, L., A novel organic chromophore for dye-sensitized nanostructured solar cells, Chemical Communications, vol. 21, pag. 2245-2247, 2006.
- Ito, S., Murakami, T.N., Comte, P., Liska, P., Gratzel, C., Nazeeruddin, M.K., Gratzel, M., Fabrication of Thin Film Dye Sensitized Solar Cells with Solar to Electric Power Conversion Efficiency over 10%., Thin Solid Films, vol. 516, pag. 4613-4619, 2008.
- Seo, K.D., Song, H.M., Lee, M.J., Pastore, M., Anselmi, C., De Angelis, F., Nazeeruddin, M.K., Gräetzel, M., Kim, H. K., Coumarin dyes containing low-band-gap chromophores for dye-sensitised solar cells, Dyes and Pigments, vol. 90, nr. 3, pag. 304-310, 2011.
- Soto-Rojo, R., Baldenebro-López, J., Glossman-Mitnik, D., Study of chemical reactivity in relation to experimental parameters of efficiency in coumarin derivatives for dye sensitized solar cells using DFT, Physical Chemistry Chemical Physics, vol. 17, pag. 14122-14129, 2015.
- Horiuchi, T., Miura, H., Uchida, S., Highly efficient metal-free organic dyes for dye-sensitized solar cells, Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, nr. 1-3, pag. 29-32, 2004.
- Ito, S., Miura, H., Uchida, S., Takata, M., Sumioka, K., Liska, P., Comte, P., Péchy, P., Grätzel, M., High-conversion-efficiency organic dye-sensitized solar cells with a novel indoline dye, Chemical Communications, vol. 41, pag. 5194-5196, 2008.
- Zhang, G., Bala, H., Cheng, Y., Shi, D., Lv, X., Yu, Q., Wang, P., High efficiency and stable dye-sensitized solar cells with an organic chromophore featuring a binary π-conjugated spacer, Chemical Communications, vol. 16, pag. 2198-2200, 2009.
- Jiao, Y., Zhang, F., Meng, S., Dye sensitized solar cells principles and new design, Solar Cells - Dye-Sensitized Devices, Editura Intech, 2011.
- Horiuchi, T., Miura, H., Uchida, S., Highly efficient metal-free organic dyes for dye-sensitized solar cells, Journal of Photochemistry and Photobiology A: Chemistry, vol. 164, nr. 1-3, pag. 29-32, 2004.