References
- Alhalaili, B., Popescu, I. N., Rusanescu, C. O., & Vidu, R. (2022). Microfluidic devices and microfluidics-integrated electrochemical and optical (Bio) Sensors for pollution analysis: a review. Sustainability, 14(19), 12844, https://doi.org/10.3390/su141912844.
- Thienel, K. C., Haller, T., & Beuntner, N. (2020). Lightweight concrete—From basics to innovations. Materials, 13(5), 1120, https://doi.org/10.3390/ma13051120
- Sun, G., Chen, D., Zhu, G., & Li, Q. (2022). Lightweight hybrid materials and structures for energy absorption: A state-of-the-art review and outlook. Thin-Walled Structures, 172, 108760. https://doi.org/10.1016/j.tws.2021.108760
- Jiang, B., He, C., Zhao, N., Nash, P., Shi, C., & Wang, Z. (2015). Ultralight metal foams. Scientific reports, 5(1), 13825. DOI: 10.1038/srep13825
- Sun, H., Xu, Z., & Gao, C. (2013). Multifunctional, ultraflyweight, synergistically assembled carbon aerogels. Advanced materials, 25(18), 2554-2560. DOI: 10.1002/adma.201204576
- Du, Q. F., & Huai, X. G. (2020, August). Research on multifunctional characteristics and application of ultralight porous metal materials based on structured. In Materials Science Forum (Vol. 1001, pp. 67-72). Trans Tech Publications Ltd. doi:10.4028/www.scientific.net/MSF.1001.67
- He, H., Wei, X., Yang, B., Liu, H., Sun, M., Li, Y., & Xu, L. (2022). Ultrastrong and multifunctional aerogels with hyperconnective network of composite polymeric nanofibers. Nature Communications, 13(1), 4242. https://doi.org/10.1038/s41467-022-31957-2
- Chen, J., & Zhang, D. (2023). Multifunctional properties and applications of ultra-light porous metal materials. In MATEC Web of Conferences (Vol. 380, p. 01026). EDP Sciences. https://doi.org/10.1051/matecconf/202338001026
- Huang, Y., & Wang, X. (2023). Challenges and Trends for Multifunctional Materials. Journal of Building Material Science, 5(1), 17-19. https://doi.org/10.30564/jbms.v5i1.5521
- Lendlein, A., Trask, R.S., 2018. Multifunctional materials: Concepts, function-structure relationships, knowledgebased design, translational materials research. Multifunctional Materials. 1, 010201, DOI 10.1088/2399-7532/aada7b
- Costa, C. M., Costa, P., & Lanceros-Mendez, S. (2021). Overview on lightweight, multifunctional materials. In Advanced Lightweight Multifunctional Materials (pp. 1-24). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-818501-8.00002-0
- Gao, Y., Zhou, Y., Yang, Q., Guo, L., & Jiang, L. (2015). Ultralight materials. Progress in Chemistry, 27(12), 1714, https://doi.org/10.7536/PC150634.
- Zou, J., Liu, J., Karakoti, A. S., Kumar, A., Joung, D., Li, Q., ... & Zhai, L. (2010). Ultralight multiwalled carbon nanotube aerogel. ACS nano, 4(12), 7293-7302, https://doi.org/10.1021/nn102246a.
- Chen, Y., Yang, Y., Xiong, Y., Zhang, L., Xu, W., Duan, G., ... & Zhang, K. (2021). Porous aerogel and sponge composites: Assisted by novel nanomaterials for electromagnetic interference shielding. Nano Today, 38, 101204. https://doi.org/10.1016/j.nantod.2021.101204
- Akhter, F., Soomro, S. A., & Inglezakis, V. J. (2021). Silica aerogels; a review of synthesis, applications and fabrication of hybrid composites. Journal of Porous Materials, 28(5), 1387-1400, https://doi.org/10.1007/s10934-021-01091-3.
- Tappan, B. C., Huynh, M. H., Hiskey, M. A., Chavez, D. E., Luther, E. P., Mang, J. T., & Son, S. F. (2006). Ultralow-density nanostructured metal foams: combustion synthesis, morphology, and composition. Journal of the American Chemical Society, 128(20), 6589-6594. https://doi.org/10.1021/ja056550k
- Fujii, S., Ryan, A. J., & Armes, S. P. (2006). Long-range structural order, moiré patterns, and iridescence in latexstabilized foams. Journal of the American Chemical Society, 128(24), 7882-7886, https://doi.org/10.1021/ja060640n.
- Wu, G., Xie, P., Yang, H., Dang, K., Xu, Y., Sain, M., ... & Yang, W. (2021). A review of thermoplastic polymer foams for functional applications. Journal of Materials Science, 56, 11579-11604, https://doi.org/10.1007/s10853-021-06034-6.
- Mi, H., Yang, J., Su, Z., Wang, T., Li, Z., Huo, W., & Qu, Y. (2017). Preparation of ultra-light ceramic foams from waste glass and fly ash. Advances in Applied Ceramics, 116(7), 400-408. doi:10.1080/17436753.2017.1342394
- Yin, J., Li, X., Zhou, J., & Guo, W. (2013). Synergistically three-dimensional boron nitride foam with ultralow permittivity and superelasticity. Nano letters, 13(7), 3232-3236. https://doi.org/10.1021/nl401308v
- Cui, Z., Luob, X., Xiao, S., Luo, X., Liu, Y., Liu, M., ... & Guo, H. (2023). Effect of sintering temperature on properties of lightweightporous ceramics prepared by foam impregnation method. Journal of Ceramic Processing Research, 24(5), 835-840, DOI : 10.36410/jcpr.2023.24.5.835.
- Schaedler, T. A., Jacobsen, A. J., Torrents, A., Sorensen, A. E., Lian, J., Greer, J. R., ... & Carter, W. B. (2011). Ultralight metallic microlattices. Science, 334(6058), 962-965, DOI: 10.1126/science.1211649.
- Xiong, J., Mines, R., Ghosh, R., Vaziri, A., Ma, L., Ohrndorf, A., ... & Wu, L. (2015). Advanced micro-lattice materials. Advanced Engineering Materials, 17(9), 1253-1264, https://doi.org/10.1002/adem.201400471
- Du, R., & Eychmüller, A. (2023). Metal-Based Aerogels and Porous Composites as Efficient Catalysts: Synthesis and Catalytic Performance. Catalysts, 13(11), 1451, https://doi.org/10.3390/catal13111451.
- Yeo, S. J., Oh, M. J., & Yoo, P. J. (2019). Structurally controlled cellular architectures for high-performance ultra-lightweight materials. Advanced Materials, 31(34), 1803670. https://doi.org/10.1002/adma.201803670
- Zhang, X., Wang, Y., Ding, B., & Li, X. (2020). Design, fabrication, and mechanics of 3D micro- /nanolattices. Small, 16(15), 1902842. https://doi.org/10.1002/smll.201902842
- Soorbaghi, F. P., Isanejad, M., Salatin, S., Ghorbani, M., Jafari, S., & Derakhshankhah, H. (2019). Bioaerogels: Synthesis approaches, cellular uptake, and the biomedical applications. Biomedicine & Pharmacotherapy, 111, 964-975, https://doi.org/10.1016/j.biopha.2019.01.014.
- Karamikamkar, S., Naguib, H. E., & Park, C. B. (2020). Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customized morphology, and multifunctionality: A review. Advances in colloid and interface science, 276, 102101, https://doi.org/10.1016/j.cis.2020.102101.
- Maleki, H., Durães, L., García-González, C. A., Del Gaudio, P., Portugal, A., & Mahmoudi, M. (2016). Synthesis and biomedical applications of aerogels: Possibilities and challenges. Advances in colloid and interface science, 236, 1-27. https://doi.org/10.1016/j.cis.2016.05.011
- James, A., & Yadav, D. (2022). Bioaerogels, the emerging technology for wastewater treatment: A comprehensive review on synthesis, properties and applications. Environmental Research, 212, 113222, https://doi.org/10.1016/j.envres.2022.113222.
- Bhagat, S.D., Rao, A.V., 2006. Surface chemical modification of TEOS based silica aerogels synthesized by two step (acid–base) sol–gel process, Applied Surface Science 252, p. 4289, https://doi.org/10.1016/j.apsusc.2005.07.006.
- Błaszczyński, T., Ślosarczyk, A., & Morawski, M. (2013). Synthesis of silica aerogel by supercritical drying method. Procedia Engineering, 57, 200-206, DOI: 10.1016/j.proeng.2013.04.028
- Kocon, L., Despetis, F., & Phalippou, J. (1998). Ultralow density silica aerogels by alcohol supercritical drying. Journal of Non-Crystalline Solids, 225, 96-100, https://doi.org/10.1016/S0022-3093(98)00322-6
- Dorcheh, A. S., & Abbasi, M. H. (2008). Silica aerogel; synthesis, properties and characterization. Journal of materials processing technology, 199(1-3), 10-26, https://doi.org/10.1016/j.jmatprotec.2007.10.060.
- Li, K., He, S., Du, C., Guo, S., & Huang, Y. (2024). Ultra flexible silica aerogel with excellent mechanical properties for durable oil-water separation. Journal of Environmental Chemical Engineering, 12(5), 113752.
- Sun, H., Xu, Z., & Gao, C. (2013). Multifunctional, ultraflyweight, synergistically assembled carbon aerogels. Advanced materials, 25(18), 2554-2560. https://doi.org/10.1002/adma.201204576
- Li, B., Tian, H., Li, L., Liu, W., Liu, J., Zeng, Z., & Wu, N. (2024). Graphene-Assisted Assembly of Electrically and Magnetically Conductive Ceramic Nanofibrous Aerogels Enable Multifunctionality. Adv. Funct. Mater, 2314653, https://doi.org/10.1002/adfm.202314653.
- Li, J., Li, J., Meng, H., Xie, S., Zhang, B., Li, L., ... & Yu, M. (2014). Ultra-light, compressible and fire-resistant graphene aerogel as a highly efficient and recyclable absorbent for organic liquids. J. Mater. Chem A, 2(9), 2934-2941, https://doi.org/10.1039/C3TA14725H
- Qian, Y., Ismail, I. M., & Stein, A. (2014). Ultralight, highsurface- area, multifunctional graphene-based aerogels from self-assembly of graphene oxide and resol. Carbon, 68, 221-231, https://doi.org/10.1016/j.carbon.2013.10.082
- Kistler, S. S. (1931). Coherent expanded aerogels and jellies. Nature, 127(3211), 741-741, https://doi.org/10.1038/127741a0.
- Pornea, A. G. M., Puguan, J. M. C., Ruello, J. L. A., & Kim, H. (2022). Multifunctional dual-pore network aerogel composite material for broadband sound absorption, thermal insulation, and fire repellent applications. ACS Applied Polymer Materials, 4(4), 2880-2895. https://doi.org/10.1021/acsapm.2c00139
- Gavillon R, Budtova T (2008) Aerocellulose: new highly porous cellulose prepared from cellulose–NaOH aqueous solutions. Biomacromolecules 9:269–277, https://doi.org/10.1021/bm700972k
- Effraimopoulou, E., Jaxel, J., Budtova, T., & Rigacci, A. (2024). Hydrophobic Modification of Pectin Aerogels via Chemical Vapor Deposition. Polymers, 16(12), 1628. DOI 10.3390/polym16121628
- Nita, L. E., Ghilan, A., Rusu, A. G., Neamtu, I., & Chiriac, A. P. (2020). New trends in bio-based aerogels. Pharmaceutics, 12(5), 449, https://doi.org/10.3390/pharmaceutics12050449
- Mecklenburg, M., Schuchardt, A., Mishra, Y. K., Kaps, S., Adelung, R., Lotnyk, A., ... & Schulte, K. (2012). Aerographite: ultra lightweight, flexible nanowall, carbon microtube material with outstanding mechanical performance. Advanced Materials, 24(26), 3486-3490. https://doi.org/10.1002/adma.201200491
- Jiang, F., & Hsieh, Y. L. (2014). Super water absorbing and shape memory nanocellulose aerogels from TEMPOoxidized cellulose nanofibrils via cyclic freezing– thawing. Journal of Materials Chemistry A, 2(2), 350-359, https://doi.org/10.1039/C3TA13629A
- Jiang, X., Du, R., Hübner, R., Hu, Y., & Eychmüller, A. (2021). A roadmap for 3D metal aerogels: materials design and application attempts. Matter, 4(1), 54-94, https://doi.org/10.1016/j.matt.2020.10.001
- Pan, W.; Liang, C.; Sui, Y.; Wang, J.; Liu, P.; Zou, P.; Guo, Z.; Wang, F.; Ren, X.; Yang, C. A Highly Compressible, Elastic, and Air-Dryable Metallic Aerogels via Magnetic Field-Assisted Synthesis. Adv. Funct. Mater. 2022, 32, 2204166, https://doi.org/10.1002/adfm.202204166
- Sonu, S.S., Rai, N. & Chauhan, I. Multifunctional Aerogels: A comprehensive review on types, synthesis and applications of aerogels. J Sol-Gel Sci Technol 105, 324– 336 (2023). https://doi.org/10.1007/s10971-022-06026-1
- Wen, D., Liu, W., Haubold, D., Zhu, C., Oschatz, M., Holzschuh, M., Wolf, A., Simon, F., Kaskel, S., and Eychmu¨ller, A. (2016). Gold aerogels: three-dimensional assembly of nanoparticles and their use as electrocatalytic interfaces. ACS Nano 10, 2559–2567, https://doi.org/10.1021/acsnano.5b07505
- Selvasekaran, P., & Chidambaram, R. (2021). Food-grade aerogels obtained from polysaccharides, proteins, and seed mucilages: Role as a carrier matrix of functional food ingredients. Trends in Food Science & Technology, 112, 455-470, https://doi.org/10.1016/j.tifs.2021.04.021.
- García-González, C. A., Sosnik, A., Kalmár, J., De Marco, I., Erkey, C., Concheiro, A., & Alvarez-Lorenzo, C. (2021). Aerogels in drug delivery: From design to application. Journal of Controlled Release, 332, 40-63, https://doi.org/10.1016/j.jconrel.2021.02.012.
- Liu, Z., Zhang, S., He, B., Wang, S., & Kong, F. (2021). Synthesis of cellulose aerogels as promising carriers for drug delivery: a review. Cellulose, 28, 2697-2714, https://doi.org/10.1007/s10570-021-03734-9.
- Liu, H., Xing, F., Yu, P., Zhe, M., Shakya, S., Liu, M., ... & Ritz, U. (2024). Multifunctional aerogel: A unique and advanced biomaterial for tissue regeneration and repair. Materials & Design, 243, 113091, https://doi.org/10.1016/j.matdes.2024.113091.
- Zhou, F., Feng, X., Yu, J., & Jiang, X. (2018). High performance of 3D porous graphene/lignin/sodium alginate composite for adsorption of Cd (II) and Pb (II). Environmental Science and Pollution Research, 25, 15651-15661, https://doi.org/10.1007/s11356-018-1733-8.
- Almeida, C. M., Merillas, B., & Pontinha, A. D. R. (2024). Trends on Aerogel-Based Biosensors for Medical Applications: An Overview. International Journal of Molecular Sciences, 25(2), 1309, https://doi.org/10.3390/ijms25021309.
- Zou, F.; Budtova, T. Polysaccharide-Based Aerogels for Thermal Insulation and Superinsulation: An Overview. Carbohydr. Polym. 2021, 266, 118130, https://doi.org/10.1016/j.carbpol.2021.118130
- Verma, A.; Thakur, S.; Goel, G.; Raj, J.; Gupta, V.K.; Roberts, D.; Thakur, V.K. Bio-Based Sustainable Aerogels: New Sensation in CO2 Capture. Curr. Res. Green Sustain. Chem. 2020, 3, 100027, https://doi.org/10.1016/j.crgsc.2020.100027.
- Chtchigrovsky, M.; Primo, A.; Gonzalez, P.; Molvinger, K.; Robitzer, M.; Quignard, F.; Taran, F. Functionalized Chitosan as a Green, Recyclable, Biopolymer-Supported Catalyst for the [3+2] Huisgen Cycloaddition. Angew. Chem. 2009, 121, 6030–6034, https://doi.org/10.1002/anie.200901309
- Wang, B., Zhang, H., Yang, X., Tian, T., & Bai, Z. (2024). Facile construction of multifunctional bio-aerogel for efficient separation of surfactant-stabilized oil-in-water emulsions and co-existing organic pollutant. Journal of Hazardous Materials, 461, 132434, https://doi.org/10.1016/j.jhazmat.2023.132434.
- Zhou, S., Liu, P., Wang, M., Zhao, H., Yang, J., & Xu, F. (2016). Sustainable, reusable, and superhydrophobic aerogels from microfibrillated cellulose for highly effective oil/water separation. ACS Sustainable Chemistry & Engineering, 4(12), 6409-6416, https://doi.org/10.1021/acssuschemeng.6b01075
- Mallepally, R. R., Bernard, I., Marin, M. A., Ward, K. R., & McHugh, M. A. (2013). Superabsorbent alginate aerogels. The Journal of Supercritical Fluids, 79, 202-208, https://doi.org/10.1016/j.supflu.2012.11.024.
- Gui, Y., Fei, Z., Zhao, S., Zhang, Z., Shao, H., Chen, J., & Yang, Z. (2023). High-strength and multifunctional honeycomb polyimide aerogel fabricated by a freeze casting-assisted extrusion printing and building blockassembly strategy for sound absorbing metamaterials. Additive Manufacturing, 77, 103799, https://doi.org/10.1016/j.addma.2023.103799.
- Yin, R., Cheng, H., Hong, C., & Zhang, X. (2017). Synthesis and characterization of novel phenolic resin/silicone hybrid aerogel composites with enhanced thermal, mechanical and ablative properties. Composites Part A: Applied Science and Manufacturing, 101, 500-510, https://doi.org/10.1016/j.compositesa.2017.07.012.
- Francisco García-Moreno: Commercial Applications of Metal Foams: Their Properties and Production. Materials 2016, 9(2), 85, https://doi.org/10.3390/ma9020085;
- Zhao, S., Malfait, W. J., Guerrero-Alburquerque, N., Koebel, M. M., & Nyström, G. (2018). Biopolymer aerogels and foams: Chemistry, properties, and applications. Angewandte Chemie International Edition, 57(26), 7580-7608, https://doi.org/10.1002/anie.201709014.
- Chen, N., & Pan, Q. (2013). Versatile fabrication of ultralight magnetic foams and application for oil–water separation. ACS nano, 7(8), 6875-6883, https://doi.org/10.1021/nn4020533.
- Gautam, R., Bassi, A. S., & Yanful, E. K. (2007). A review of biodegradation of synthetic plastic and foams. Applied biochemistry and biotechnology, 141, 85-108, https://doi.org/10.1007/s12010-007-9212-6.
- Thiyagarajan, R., & Senthil Kumar, M. (2021). A review on closed cell metal matrix syntactic foams: a green initiative towards eco-sustainability. Materials and Manufacturing Processes, 36(12), 1333-1351, https://doi.org/10.1080/10426914.2021.1928696
- Chen, X., & Li, Y. X. (2003). Porous metals: research advances and applications. Mater. Rev, 17(5), 5.
- Ashby, M. F. (2006). The properties of foams and lattices. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364(1838), 15-30, https://doi.org/10.1098/rsta.2005.1678.
- Kulshreshtha, A., & Dhakad, S. K. (2020). Preparation of metal foam by different methods: A review. Materials Today: Proceedings, 26, 1784-1790, https://doi.org/10.1016/j.matpr.2020.02.375.
- Sutygina, A., Betke, U., Hasemann, G., & Scheffler, M. (2020, July). Manufacturing of open-cell metal foams by the sponge replication technique. In IOP Conference Series: Materials Science and Engineering (Vol. 882, No. 1, p. 012022). IOP Publishing, https://doi.org/10.1088/1757-899x/882/1/012022.
- Hassan, A., & Alnaser, I. A. (2024). A Review of Different Manufacturing Methods of Metallic Foams. ACS omega, 9(6), 6280-6295, doi: 10.1021/acsomega.3c08613.
- Guner, A.; Arikan, M.M.; Nebioğlu, M. New Approaches to Aluminum Integral Foam Production with Casting Methods. Metals 2015, 5, 1553–1565, https://doi.org/10.3390/met5031553
- Badiche, X.; Forest, S.; Guibert, T.; Bienvenu, Y.; Bartout, J.D.; Ienny, P.; Croset, M.; Bernet, H. Mechanical properties and non-homogeneous deformation of open-cell nickel foams: Application of the mechanics of cellular solids and of porous materials. Mater. Sci. Eng. A 2000, 289, 276–288, https://doi.org/10.1016/S0921-5093(00)00898-4
- Miyoshi, T.; Itoh, M.; Akiyama, S.; Kitahara, A. ALPORAS Aluminum Foam: Production Process, Properties, and Applications. Adv. Eng. Mater. 2000, 2, 179–183, https://doi.org/10.1002/(SICI)1527-2648(200004)2:4<179::AID-ADEM179>3.0.CO;2-G.
- Jiang, B., Yang, X., Niu, W., He, C., Shi, C., & Zhao, N. (2016). Ultralight Co/Ag composite foams: synthesis, morphology and compressive property. Scripta Materialia, 117, 68-72.
- Emmel, M., & Aneziris, C. G. (2012). Development of novel carbon bonded filter compositions for steel melt filtration. Ceramics International, 38(6), 5165-5173, https://doi.org/10.1016/j.ceramint.2012.03.022
- Huo, W., Zhang, X., Chen, Y., Hu, Z., Wang, D., & Yang, J. (2019). Ultralight and high-strength bulk alumina/zirconia composite ceramic foams through direct foaming method. Ceramics International, 45(1), 1464-1467, https://doi.org/10.1016/j.ceramint.2018.09.095
- Chen Z.P., Ren W.C., Gao L.B., Liu B.L., Pei S.F., Cheng H.M. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nat. Mater. 2011;10:424–428, https://doi.org/10.1038/nmat3001.
- Gui, X., Wei, J., Wang, K., Cao, A., Zhu, H., Jia, Y., ... & Wu, D. (2010). Carbon nanotube sponges. Advanced materials, 22(5), 617-621 https://doi.org/10.1002/adma.200902986
- Su, M., Pan, Y., Zheng, G., Liu, C., Shen, C., & Liu, X. (2021). An ultra-light, superhydrophobic and thermal insulation ultra-high molecular weight polyethylene foam. Polymer, 218, 123528, https://doi.org/10.1016/j.polymer.2021.123528.
- Buzzi, O., Fityus, S., Sasaki, Y., & Sloan, S. (2008). Structure and properties of expanding polyurethane foam in the context of foundation remediation in expansive soil. Mechanics of Materials, 40(12), 1012-1021, https://doi.org/10.1016/j.mechmat.2008.07.002.
- Nandwana, V., Ribet, S. M., Reis, R. D., Kuang, Y., More, Y., & Dravid, V. P. (2020). OHM sponge: A versatile, efficient, and ecofriendly environmental remediation platform. Industrial & Engineering Chemistry Research, 59(23), 10945-10954, https://doi.org/10.1021/acs.iecr.0c01493.
- Choi, S. J., Kwon, T. H., Im, H., Moon, D. I., Baek, D. J., Seol, M. L., ... & Choi, Y. K. (2011). A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water. ACS applied materials & interfaces, 3(12), 4552-4556, https://doi.org/10.1021/am201352w.
- Ubertalli, G., & Ferraris, S. (2020). Al-based metal foams (AMF) as permanent cores in casting: State-of-the-art and future perspectives. Metals, 10(12), 1592, https://doi.org/10.3390/met10121592.
- Song, J., Li, L., Kong, S., Yu, B., Wan, Y., Zhou, Y., ... & Long, W. (2021). Lightweight and low thermal conducted face-centered-cubic cementitious lattice materials (FCLMs). Composite Structures, 263, 113536. https://daily.jstor.org/microlattice-worlds-lightest-metal/
- Doty, R. E., Kolodziejska, J. A., & Jacobsen, A. J. (2012). Hierarchical polymer microlattice structures. Advanced Engineering Materials, 14(7), 503-507, https://doi.org/10.1002/adem.201200007.
- Yang, F., Zhao, S., Chen, G., Li, K., Fei, Z., Mummery, P., & Yang, Z. (2024). High-strength, multifunctional and 3D printable mullite-based porous ceramics with a controllable shell-pore structure. Advanced Powder Materials, 3(1), 100153, https://doi.org/10.1016/j.apmate.2023.100153.
- Wenwang, W., & Re, X. (2022). Design of lightweight lattice meta-structures and approaches to manipulate their multi-functional mechanical properties. 力学进展, 52(3), 673-718, doi: 10.6052/1000-0992-22-002
- Anna Bonanomi, New ultralight materials for future aerospace vehicles, https://www.powertransmissionworld.com/new-ultralightmaterials-for-future-aerospace-vehicles/
- Rashed, M. G., Ashraf, M., Mines, R. A. W., & Hazell, P. J. (2016). Metallic microlattice materials: A current state of the art on manufacturing, mechanical properties and applications. Materials & Design, 95, 518-533, https://doi.org/10.1016/j.matdes.2016.01.146.
- Meza, L. R., Das, S., & Greer, J. R. (2014). Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science, 345(6202), 1322-1326, DOI: 10.1126/science.1255908
- Zheng, X., Lee, H., Weisgraber, T. H., Shusteff, M., DeOtte, J., Duoss, E. B., ... & Spadaccini, C. M. (2014). Ultralight, ultrastiff mechanical metamaterials. Science, 344(6190), 1373-1377, DOI: 10.1126/science.1252291.