Have a personal or library account? Click to login
Forecasting Real Estate Prices in Romania: A Lag Optimized Linear Approach Cover

Forecasting Real Estate Prices in Romania: A Lag Optimized Linear Approach

Open Access
|Aug 2023

References

  1. Ardila, D., Sanadgol, D., Cauwels, P., & Sornette, D. (2020). Identification and critical time forecasting of real estate bubbles in the USA. Swiss Finance Institute Research Paper No. 14-44. http://dx.doi.org/<a href="https://doi.org/10.2139/ssrn.2465000" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2139/ssrn.2465000</a>
  2. Fan, Y., Yang, Z., & Yavas, A. (2019). Understanding Real Estate Price Dynamics: The Case of Housing Prices in Five Major Cities of China. Journal of Housing Economics, 43, 37–55. <a href="https://doi.org/10.1016/j.jhe.2018.09.003" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.jhe.2018.09.003</a>
  3. Ghosalkar, N. N., & Dhage, S. N. (2018). Real Estate Value Prediction Using Linear Regression. 2018 Fourth International Conference on Computing Communication Control and Automation (ICCUBEA). <a href="https://doi.org/10.1109/ICCUBEA.2018.8697639" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1109/ICCUBEA.2018.8697639</a>
  4. Kang, J., Lee, H. J., Jeong, S. H., Lee, H. S., & Oh, K. J. (2020). Developing a Forecasting Model for Real Estate Auction Prices Using Artificial Intelligence. Sustainability, 12(7), 12072899. <a href="https://doi.org/10.3390/su12072899" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/su12072899</a>
  5. Kuvalekar, A., Manchewar, S., Mahadik, S., & Jawale, S. (2020). House Price Forecasting Using Machine Learning. Proceedings of the 3rd International Conference on Advances in Science and Technology. http://doi.org/<a href="https://doi.org/10.2139/ssrn.3565512" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2139/ssrn.3565512</a>
  6. Kouwenberg, R., & Zwinkels, R. (2014). Forecasting the US housing market. International Journal of Forecasting, 3, 415–425. <a href="https://doi.org/10.1016/j.ijforecast.2013.12.010" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.ijforecast.2013.12.010</a>
  7. Pai, P-P., & Wang, W-C. (2020). Using Machine Learning Models and Actual Transaction Data for Predicting Real Estate Prices. Applied Sciences, 10(17), 10175832. <a href="https://doi.org/10.3390/app10175832" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.3390/app10175832</a>
  8. Perez-Rave, J. I., Correa–Morales, J. C., & González-Echavarría, F. (2019). A machine learning approach to big data regression analysis of real estate prices for inferential and predictive purposes. Journal of Property Research, 36(1), 59–96. <a href="https://doi.org/10.1080/09599916.2019.1587489" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1080/09599916.2019.1587489</a>
  9. Pillay, S., & Rangel G. J. (2008). Evidence and Determinants of Real Estate Bubbles: The Case of Singapore. SSRN. http://doi.org/<a href="https://doi.org/10.2139/ssrn.1187011" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">10.2139/ssrn.1187011</a>
  10. Sampathkumara, V., Santhi, M. H., & Vanjinathan, J. (2015). Forecasting the land price using statistical and neural network software. Procedia Computer Science, 57, 112–121. <a href="https://doi.org/10.1016/j.procs.2015.07.377" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.procs.2015.07.377</a>
  11. Tien, N. H., Vu, N. T., Dung, H. T., & Minh Duc, L. D. (2019). Determinants of real estate bubble in Vietnam. International Journal of Research in Finance and Management, 2(2), 75–80.
  12. Zhaoyang C., Liu, Q., & Cao, S. (2020). Real estate supports rapid development of China’s urbanization. Land Use Policy, 95, 104582. <a href="https://doi.org/10.1016/j.landusepol.2020.104582" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1016/j.landusepol.2020.104582</a>
  13. Zhang, Q. (2021). Housing Price Prediction Based on Multiple Linear Regression. Scientific Programming. <a href="https://doi.org/10.1155/2021/7678931" target="_blank" rel="noopener noreferrer" class="text-signal-blue hover:underline">https://doi.org/10.1155/2021/7678931</a>
DOI: https://doi.org/10.2478/bjreecm-2023-0008 | Journal eISSN: 2255-9671 | Journal ISSN: 2255-9604
Language: English
Page range: 120 - 132
Submitted on: Jun 28, 2023
Accepted on: Jul 20, 2023
Published on: Aug 4, 2023
Published by: Riga Technical University
In partnership with: Paradigm Publishing Services
Publication frequency: 1 times per year

© 2023 Alexandru I. Chirilus, published by Riga Technical University
This work is licensed under the Creative Commons Attribution 4.0 License.