Have a personal or library account? Click to login

The Development of a Fuzzy Logic System Using MATLAB for Early Detection of Hereditary Cancer in BRCA1/2 Negative Cases

Open Access
|Oct 2025

References

  1. Łukasiewicz, S., Czeczelewski, M., Forma, A., Baj, J., Sitarz, R., & Stanisławek, A. (2021). Breast Cancer-Epidemiology, Risk Factors, Classification, Prognostic Markers, and Current Treatment Strategies-An Updated Review. Cancers, 13(17), 4287. https://doi.org/10.3390/cancers13174287.
  2. Ferlay, J., Colombet, M., Soerjomataram, I., Mathers, C., Parkin, D. M., Piñeros, M., ... & Bray, F. (2019). Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. International journal of cancer, 144(8), 1941–1953.
  3. Apostolou, P., & Fostira, F. (2013). Hereditary breast cancer: the era of new susceptibility genes. BioMed research international, 2013.
  4. Tuncel, G., & Ergören, M. Ç. (2019). Functional coding and non-coding variants in human BRCA1 gene and their use in genetic screening. Medical Oncology, 36(8), 71.
  5. Szabo, C., Masiello, A., Ryan, J. F., BIC Consortium, & Brody, L. C. (2000). The breast cancer information core: database design, structure, and scope. Human mutation, 16(2), 123–131.
  6. Moghadasi, S., Hofland, N., Wouts, J. N., Hogervorst, F. B., Wijnen, J. T., Vreeswijk, M. P., & van Asperen, C. J. (2013). Variants of uncertain significance in BRCA1 and BRCA2 assessment of in silico analysis and a proposal for communication in genetic counselling. Journal of medical genetics, 50(2), 74–79.
  7. Murthy, N. S., & Bethala, C. (2023). Review paper on research direction towards cancer prediction and prognosis using machine learning and deep learning models. Journal of Ambient Intelligence and Humanized Computing, 14(5), 5595–5613.
  8. Sizilio, G. R., Leite, C. R., Guerreiro, A. M., & Neto, D. D. (2012). Fuzzy method for pre-diagnosis of breast cancer from the Fine Needle Aspirate analysis. Biomedical engineering online, 11(1), 1–21.
  9. Kempowsky-Hamon, T., Valle, C., Lacroix-Triki, M., Hedjazi, L., Trouilh, L., Lamarre, S., ... & Anton-Leberre, V. (2015). Fuzzy logic selection as a new reliable tool to identify molecular grade signatures in breast cancer–the INNODIAG study. BMC medical genomics, 8(1), 1–17.
  10. Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., ... & Rehm, H. L. (2015). Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in medicine, 17(5), 405–423.
  11. Potter, M. C., Lessing, J. L., Aboufadel, E. F., Potter, M. C., Lessing, J. L., & Aboufadel, E. F. (2019). The theory of matrices. Advanced Engineering Mathematics, 200–270.
  12. Pourjavad, E., & Mayorga, R. V. (2019). A comparative study and measuring performance of manufacturing systems with Mamdani fuzzy inference system. Journal of Intelligent Manufacturing, 30, 1085–1097.
  13. Kamboj, V., & Kaur, A. (2013). Comparison of constant sugeno-type and mamdani-type fuzzy inference system for load sensor. International Journal of Soft Computing and Engineering, 3(2), 204–207.
  14. Kumar, Y., Koul, A., Singla, R., & Ijaz, M. F. (2023). Artificial intelligence in disease diagnosis: a systematic literature review, synthesizing framework and future research agenda. Journal of ambient intelligence and humanized computing, 14(7), 8459–8486. https://doi.org/10.1007/s12652-021-03612-z
  15. Tawfeeq, F. N. (2018). Development of Prognosis Factors in a Scoring System for Predicting of Breast Cancer Mortality. Development, 8(4).
  16. Latha, K. C., Madhu, B., Ayesha, S., Ramya, R., Sridhar, R., & Balasubramanian, S. (2013). Visualization of risk in breast cancer using fuzzy logic in matlab environment. International Journal of Computational Intelligence Techniques, 4(1), 114.
  17. Hu, Z., Wang, L. E., & Wei, Q. (2007). Molecular epidemiology of DNA repair and cancer susceptibility—A review of population-based studies. DNA repair, genetic instability, and cancer, 315–343.
  18. Sadeghi, F., Asgari, M., Matloubi, M., Ranjbar, M., Karkhaneh Yousefi, N., Azari, T., & Zaki-Dizaji, M. (2020). Molecular contribution of BRCA1 and BRCA2 to genome instability in breast cancer patients: Review of radiosensitivity assays. Biological Procedures Online, 22, 1–28.
  19. Senturk, N., Tuncel, G., Dogan, B., Aliyeva, L., Dundar, M. S., Ozemri Sag, S., Mocan, G., Temel, S. G., Dundar, M., & Ergoren, M. C. (2021). BRCA Variations Risk Assessment in Breast Cancers Using Different Artificial Intelligence Models. Genes, 12(11), 1774. https://doi.org/10.3390/genes12111774
Language: English
Published on: Oct 8, 2025
Published by: Macedonian Academy of Sciences and Arts
In partnership with: Paradigm Publishing Services
Publication frequency: 2 times per year

© 2025 N Senturk, GP Volkan, Babiker Ali SM, B Dogan, L Aliyeva, OS Sag, G S Temel, M Dundar, C M Ergoren, published by Macedonian Academy of Sciences and Arts
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.