Have a personal or library account? Click to login
Array-comparative genomic hybridization results in clinically affected cases with apparently balanced chromosomal rearrangements Cover

Array-comparative genomic hybridization results in clinically affected cases with apparently balanced chromosomal rearrangements

Open Access
|Mar 2021

References

  1. Jacobs PA, Browne C, Gregson N, Joyce C, White H. Estimates of the frequency of chromosome abnormalities detectable in unselected newborns using moderate levels of banding. J Med Genet. 1992; 29(2): 103-108.
  2. Kirchhoff M, Rose H, Lundsteen C. High resolution comparative genomic hybridisation in clinical cytogenetics. J Med Genet. 2001; 38(11): 740-744.
  3. Warburton D. De novo balanced chromosome rearrangements and extra marker chromosomes identified at prenatal diagnosis: Clinical significance and distribution of breakpoints. Am J Hum Genet. 1991; 49(5): 995-1013.
  4. Madan K, Nieuwint AW, van Bever Y. Recombination in a balanced complex translocation of a mother leading to a balanced reciprocal translocation in the child. Review of 60 cases of balanced complex translocations. Hum Genet. 1997; 99(6): 806-815.
  5. Sismani C, Kitsiou-Tzeli S, Ioannides M, Christodoulou C, Anastasiadou V, Stylianidou G, et al. Cryptic genomic imbalances in patients with de novo or familial apparently balanced translocations and abnormal phenotype. Mol Cytogenet. 2008; 1(7): 15-23.
  6. Menten B, Maas N, Thienpont B, Buysse K, Vandesompele J, Melotte C, et al. Emerging patterns of cryptic chromosomal imbalance in patients with idiopathic mental retardation and multiple congenital anomalies: A new series of 140 patients and review of published reports. J Med Genet. 2006; 43(8): 625-633.
  7. Rauch A, Rüschendorf F, Huang J, Trautmann U, Becker C, Thiel C, et al. Molecular karyotyping using an SNP array for genomewide genotyping. J Med Genet. 2004; 41(12): 916-922.
  8. Riggs ER, Andersen EF, Cherry AM, Kantarci S, Kearney H, Patel A, et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020; 22(2): 245-257.
  9. South ST, Lee C, Lamb AN, Higgins AW, Kearney HM; Working Group for the American College of Medical Genetics and Genomics Laboratory Quality Assuarance Committee. ACMG Standards and Guidelines for constitutional cytogenomic microarray analysis, including postnatal and prenatal applications: Revision 2013. Genet Med. 2013; 15(11): 901909 (https://pubmed.ncbi.nlm.nih.gov/2407193/
  10. Darilek S, Ward P, Pursley A, Plunkett K, Furman P, Magoulas P, et al. Pre- and postnatal genetic testing by array-comparative genomic hybridization: Genetic counseling perspectives. Genet Med. 2008; 10(1): 13-18.
  11. De Gregori M, Ciccone R, Magini P, Pramparo T, Gimelli S, Messa J, et al. Cryptic deletions are a common finding in “balanced” reciprocal and complex chromosome rearrangements: A study of 59 patients. J Med Genet. 2007; 44(12): 750-762.
  12. Feenstra I, Hanemaaijer N, Sikkema-Raddatz B, Yntema H, Dijkhuizen T, Lugtenberg D, et al. Balanced into array: genome-wide array analysis in 54 patients with an apparently balanced de novo chromosome rearrangement and a meta-analysis. Eur J Hum Genet. 2011; 19(11): 1152-1160.
  13. Gribble SM, Prigmore E, Burford DC, Porter KM, Ng BL, Douglas EJ, et al. The complex nature of constitutional de novo apparently balanced translocations in patients presenting with abnormal phenotypes. J Med Genet. 2005; 42(1): 8-16.
  14. Schluth-Bolard C, Delobel B, Sanlaville D, Boute O, Cuisset JM, Sukno S, et al. Cryptic genomic imbalances in de novo and inherited apparently balanced chromosomal rearrangements: Array CGH study of 47 unrelated cases. Eur J Med Genet. 2009; 52(5): 291-296.
  15. Tabet AC, Verloes A, Pilorge M, Delaby E, Delorme R, Nygren G, et al. Complex nature of apparently balanced chromosomal rearrangements in patients with autism spectrum disorder. Mol Autism. 2015; 6(5): 19-32.
  16. Gijsbers AC, Bosch CA, Dauwerse JG, Giromus O, Hansson K, Hilhorst-Hofstee Y, et al. Additional cryptic CNVs in mentally retarded patients with apparently balanced karyotypes. Eur J Med Genet. 2010; 53(5): 227-233.
  17. Yakut S, Cetin Z, Clark OA, Nur BG, Mihci E, Karauzum SB. Associations between the clinical findings of cases having submicroscopic chromosomal imbalances at chromosomal breakpoints of apparently balanced structural rearrangements. Gene Rep. 2017; 7(7): 50-58 (https://www.sciencedirect.com/science/article/pii/S2452014417300092).
  18. Dong Z, Wang H, Chen H, Jiang H, Yuan J, Yang Z, et al. Identification of balanced chromosomal rearrangements previously unknown among participants in the 1000 Genomes Project: Implications for interpretation of structural variation in genomes and the future of clinical cytogenetics. Genet Med. 2018; 20(7): 697-707.
  19. van Bon BW, Balciuniene J, Fruhman G, Naga-mani SC, Broome DL, Cameron E, et al. The phenotype of recurrent 10q22q23 deletions and duplications. Eur J Hum Genet. 2011; 19(4): 400-408.
  20. Nenadic I, Maitra R, Scherpiet S, Gaser C, Schultz CC, Schachtzabel C, et al. Glutamate receptor δ1 (GRID1) genetic variation and brain structure in schizophrenia. J Psychiat Res. 2012; 46(12): 1531-1539.
  21. Treutlein J, Mühleisen TW, Frank J, Mattheisen M, Herms S, Ludwig KU, et al. Dissection of phenotype reveals possible association between schizophrenia and Glutamate Receptor Delta 1 (GRID1) gene promoter. J Psychiatr Res. 2009; 111(1-3): 123-130 (https://pubmed.ncbi.nlm.nih.gov/19346103/
  22. Evangelidou P, Sismani C, Ioannides M, Christodoulou C, Koumbaris G, Kallikas I, et al. Clinical application of whole-genome array CGH during prenatal diagnosis: Study of 25 selected pregnancies with abnormal ultrasound findings or apparently balanced structural aberrations. Mol Cytogenet. 2010; 3: 24.
  23. Armour CM, Dougan SD, Brock JA, Chari R, Chodirker BN, DeBie I, et al. Practice guideline: Joint CCMG-SOGC recommendations for the use of chromosomal microarray analysis for prenatal diagnosis and assessment of fetal loss in Canada. J Med Genet. 2018; 55(4): 215-221.
  24. Shaffer LG, Dabell MP, Rosenfeld JA, Neill NJ, Ballif BC, Coppinger J, et al. Referral patterns for microarray testing in prenatal diagnosis. Prenat Diagn. 2012; 32(4): 344-350.
  25. Vanakker O, Vilain C, Janssens K, Van der Aa N, Smits G, Bandelier C, et al. Implementation of genomic arrays in prenatal diagnosis: The Belgian approach to meet the challenges. Eur J Med Genet. 2014; 57(4): 151-156.
  26. Levy B, Burnside RD. Are all chromosome microarrays the same? What clinicians need to know. Prenat Diagn. 2019; 39(3): 157-164.
  27. Shinawi M, Liu P, Kang S-HL, Shen J, Belmont JW, Scott DA, et al. Recurrent reciprocal 16p11.2 rearrangements associated with global developmental delay, behavioural problems, dysmorphism, epilepsy, and abnormal head size. J Med Genet. 2010; 47(5): 332-341.
  28. Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT, Fossdal R, et al. Association between microdeletion and microduplication at 16p11.2 and autism. N Engl J Med. 2008; 358(7): 667-675.
  29. D’Angelo D, Lebon S, Chen Q, Martin-Brevet S, Snyder LG, Hippolyte L, et al.; Cardiff University Experiences of Children with Copy Number Variants (ECHO) Study; 16p11.2 European Consortium; Simons Variation in Individuals Project (VIP) Consortium. Defining the effect of the 16p11.2 duplication on cognition, behavior, and medical comorbidities. JAMA Psychiatry. 2016; 73(1): 20-30.
  30. Shinawi M, Cheung SW. The array CGH and its clinical applications. Drug Discov Today. 2008; 13(1718): 760-770.
  31. Trippe H, Wieczorek S, Kötting J, Kress W, Schara U. Xp21/A translocation: A rarely considered genetic cause for manifesting carriers of duchenne muscular dystrophy. Neuropediatrics. 2014; 45(5): 333-335.
  32. Hatch EM, Hetzer MW. Chromothripsis. Curr Biol. 2015; 25(10): R397-R399.
  33. Liu P, Carvalho CMB, Hastings PJ, Lupski JR. Mechanisms for recurrent and complex human genomic rearrangements. Curr Opin Genet Dev. 2012; 22(3): 211-220.
  34. Baptista J, Mercer C, Prigmore E, Gribble SM, Carter NP, Maloney V, et al. Breakpoint mapping and array CGH in translocations: Comparison of a phenotypically normal and an abnormal cohort. Am J Hum Genet. 2008; 82(4): 927-936.
  35. Chen W, Ullmann R, Langnick C, Menzel C, Wotschofsky Z, Hu H, et al. Breakpoint analysis of balanced chromosome rearrangements by next-generation paired-end sequencing. Eur J Hum Genet. 2010; 18(5): 539-543.
  36. Talkowski ME, Ernst C, Heilbut A, Chiang C, Hanscom C, Lindgren A, et al. Next-generation sequencing strategies enable routine detection of balanced chromosome rearrangements for clinical diagnostics and genetic research. Am J Hum Genet. 2011; 88(4): 469-481.
  37. Higgins AW, Alkuraya FS, Bosco AF, Brown KK, Bruns GA, Donovan DJ, et al. Characterization of apparently balanced chromosomal rearrangements from the developmental genome anatomy project. Am J Hum Genet. 2008; 82(3): 712-722.
  38. Simioni M, Artiguenave F, Meyer V, Sgardioli IC, Viguetti-Campos NL, Lopes Monlleó I, et al. Genomic investigation of balanced chromosomal rearrangements in patients with abnormal phenotypes. Mol Syndromol. 2017; 8(4): 187-194.
Language: English
Page range: 25 - 34
Published on: Mar 23, 2021
Published by: Macedonian Academy of Sciences and Arts
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 NB Satkin, B Karaman, S Ergin, H Kayserili, IH Kalelioglu, R Has, A Yuksel, S Basaran, published by Macedonian Academy of Sciences and Arts
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.