Have a personal or library account? Click to login
Familial non-autoimmune hyperthyroidism in family members across four generations due to a novel disease-causing variant in the thyrotropin receptor gene Cover

Familial non-autoimmune hyperthyroidism in family members across four generations due to a novel disease-causing variant in the thyrotropin receptor gene

Open Access
|Mar 2021

References

  1. Kero J, Ahmed K, Wettschureck N, Tunaru S, Wintermantel T, Greiner E, et al. Thyrocyte-specific Gq/ G11 deficiency impairs thyroid function and prevents goiter development. J Clin Invest. 2007; 117(9): 2399-2407.
  2. Duprez L, Parma J, Van Sande J, Allgeier A, Leclère J, Schvartz C, et al. Germline mutations in the thyrotropin receptor gene cause non-autoimmune autosomal dominant hyperthyroidism. Nat Genet. 1994; 7(3): 396-401.
  3. Kopp P, Van Sande J, Parma J, Duprez L, Gerber H, Joss E, et al. Congenital hyperthyroidism caused by a mutation in the thyrotropin-receptor gene. N Engl J Med. 1995; 332(3): 150-154.
  4. Stephenson A, Lau L, Eszlinger M, Paschke R. The thyroid stimulating hormone receptor mutation database update. Thyroid. 2020; 30(6): 931-935.
  5. Paschke R, Niedziela M, Vaidya B, Persani L, Rapoport B, Leclere J. 2012 European thyroid association guidelines for the management of familial and persistent sporadic non-autoimmune hyperthyroidism caused by thyroid-stimulating hormone receptor germline mutations. Eur Thyroid J. 2012; 1(3): 142-147.
  6. Ferraz C, Paschke R. Inheritable and sporadic non-autoimmune hyperthyroidism. Best Pract Res Clin Endocrinol Metab [Internet]. 2017; 31(2): 265-275. (Available at http://dx.doi.org/10.1016/j.beem.2017.04.005.)
  7. Gozu HI, Lublinghoff J, Bircan R, Paschke R. Genetics and phenomics of inherited and sporadic non-autoimmune hyperthyroidism. Mol Cell Endocrinol. 2010; 322(1-2): 125-134.
  8. Führer D. Constitutive TSH receptor activation as a hallmark of thyroid autonomy. Endocrine. 2020; 68(2): 274-278.
  9. Human Gene Mutation Database (HGMD®) (http://www.hgmd.cf.ac.uk/)
  10. Landrum MJ, Chitipiralla S, Brown GR, Chen C, Gu B, Hart J, et al. ClinVar: Improvements to accessing data. Nucleic Acids Res. 2020; 48(D1): D835-D844. doi: 10.1093/nar/gkz972.
  11. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020; 581(7809): 434-443. doi: 10.1038/s41586- 020-2308-7. Epub 2020 May 27.
  12. Ng PC, Henikoff S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003; 31(13): 3812-3814.
  13. Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, et al. A method and server for predicting damaging missense mutations. Nat Methods. 2010; 7(4):248-249.
  14. Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: Mutation prediction for the deep-sequencing age. Nat Methods. 2014; 11(4): 361-362.
  15. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: Predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019; 47(D1): D886-D894.
  16. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015; 17(5): 405-424.
  17. Fuhrer D, Warner J, Sequeira M, Paschke R, Gregory J, Ludgate M. Novel TSHR germline mutation (Met463 Val) masquerading as Graves’ disease in a large Welsh kindred with hyperthyroidism. Thyroid. 2000; 10(12): 1035-1041.
  18. De Roux N, Polak M, Couet J, Leger J, Czernichow P, Milgrom E, et al. A neomutation of the thyroid-stimulating hormone receptor in a severe neonatal hyper-thyroidism. J Clin Endocrinol Metab. 1996; 81(6): 2023-2026.
  19. Lavard L, Sehested A, Jacobsen BB, Muller J, Perrild H, Feldt-Rasmussen U, et al. Long-term follow-up of an infant with thyrotoxicosis due to germline mutation of the TSH receptor gene (Met453Thr). Horm Res. 1999; 51(1): 43-46.
  20. Nakamura A, Morikawa S, Aoyagi H, Ishizu K, Tajima T. A Japanese family with nonautoimmune hyperthyroidism caused by a novel heterozygous thyrotropin receptor gene mutation. Pediatr Res. 2014; 75(6): 749-753.
  21. Supornsilchai V, Sahakitrungruang T, Wongjitrat N, Wacharasindhu S, Suphapeetiporn K, Shotelersuk V. Expanding clinical spectrum of non-autoimmune hyperthyroidism due to an activating germline mutation, p.M453 T, in the thyrotropin receptor gene. Clin Endocrinol (Oxf). 2009; 70(4): 623-628.
  22. Lueblinghoff J, Mueller S, Sontheimer J, Paschke R. Lack of consistent association of thyrotropin receptor mutations in vitro activity with the clinical course of patients with sporadic non-autoimmune hyperthyroidism. J Endocrinol Invest. 2010; 33(4): 228-233.
  23. Quellari M, Desroches A, Beau I, Beaudeux E, Misrahi M. Role of cleavage and shedding in human thyrotropin receptor function and trafficking. Eur J Biochem. 2003; 270(17): 3486-3497.
  24. Osuna PM, Udovcic M, Sharma MD. Hyperthyroidism and the heart. Methodist DeBakey Cardiovasc J. 2017; 13(2): 60-63.
  25. Mitchell JE, Hellkamp AS, Mark DB, Anderson J, Johnson GW, Poole JE, et al. Thyroid function in heart failure and impact on mortality. JACC Hear Fail. 2013; 1(1): 48-55.
Language: English
Page range: 87 - 92
Published on: Mar 23, 2021
Published by: Macedonian Academy of Sciences and Arts
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2021 A Malej, M Avbelj Stefanija, N Bratanič, K Trebušak Podkrajšek, published by Macedonian Academy of Sciences and Arts
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.