Have a personal or library account? Click to login
Some empirical results using block bootstrap in estimating the coefficients of a periodic autoregressive model Cover

Some empirical results using block bootstrap in estimating the coefficients of a periodic autoregressive model

Open Access
|Sep 2023

References

  1. Babu G. J., Singh K. (1983). Inference on means using the bootstrap. Ann. Statist. 11, 999-1003.
  2. Dudek A. E., Hurd H., Wojtowicz W. (2014). Bootstrap for Maximum Likelihood Estimates of PARMA coefficients, Cyclostationarity: Theory and Methods, Part of the series Lecture Notes in Mechanical Engineering, pp 15-22.
  3. Dudek A., Hurd H., Wojtowicz W. (2016). Periodic Autoregressive Moving Average methods based on Fourier Representation of Periodic Coefficients, pp. 130-149, WIREs Computational Statistics, Volume 8, Issue 3, Willey. https://doi.org/10.1002/wics.1380.
  4. Dudek A. E., Leskow J., Paparoditis E., Politis D. N. (2014). A generalized block bootstrap for seasonal time series, Journal of Time Series Analysis.
  5. Efron B. (1979). Bootstrap methods: Another look at the jackknife, Ann. Statis. 7, 1-26.
  6. Hurd H. & Pipiras V. (2020). Modeling Periodic Autoregressive Time Series with Multiple Periodic Effects, DOI:10.1007/978-3-030-22529-2_1, Cyclostationarity: Theory and Methods – IV (pp.1-18).
  7. Hurd H. L., Miamee A. (2007). Periodically Correlated Random Sequences, Spectral Theory and Practice, Whiley & Sons.
  8. Jones R., Brelsford W (1967). Time series with periodic structure, Biometrica, 54:403-408.
  9. Kunsch H. (1989). The Jackknife and the Bootstrap for general stationary observations, Ann. Stat.17, 1217-1241.
  10. Liu R.Y., and Singh K. (1992). Moving Blocks Jackknife and Bootstrap Capture Weak Convergence. In: Lepage, R. and Billard, L., Eds., Exploring the Limits of Bootstrap, Wiley, New York, 225-248.
  11. L´opez-de Lacalle J. (2005). ‘Periodic autoregressive time series models in R: The partsm package’, BILCODEC 2005 working paper, Universidad del Pa´ıs Vasco UPV/EHU -Departamento de Econom´ıa Aplicada III (Econometr´ıa y Estad´ıstica). URL: http://econpapers.repec.org/software/ehubilcod/200501.htm.
  12. Margo L., Ekonomi L. (2017). Some empirical results using bootstrap procedures in periodically correlated time series models, Applied Mathematical sciences, Vol. 11, No. 11, 539-547.
  13. Margo Zeqo L. (2023). Twenty-Sixth International Conference on: “Social and Natural Sciences-Global Challenge 2023” (ICSNS XXVI-2023), Berlin, Germany, Comparison of bootstrap procedures in estimating seasonal means in AROSA time series, pp. 132, ISBN: 978-9928-178-21-3.
  14. Paparoditis E., Politis D. N. (2003). Residual-based block bootstrap for unit root testing, Econometrica, Vol. 71, No. 3, May 2003, 813-855.
  15. Politis D. N. (2001). Resampling time series with seasonal components, in Frontiers in Data Mining and Bioinformatics. In: Proceedings of the 33rd Symposium on the Interface of Computing Science and Statistics, Orange County, California, pp. 619–621.
  16. Singh K. (1981). On the asymptotic accuracy of Efron’s bootstrap. Ann. Statist. 9 1187–1195.
DOI: https://doi.org/10.2478/bjir-2023-0004 | Journal eISSN: 2411-9725 | Journal ISSN: 2410-759X
Language: English
Page range: 34 - 41
Published on: Sep 21, 2023
Published by: International Institute for Private, Commercial and Competition Law
In partnership with: Paradigm Publishing Services
Publication frequency: 3 issues per year

© 2023 Lorena Margo Zeq, published by International Institute for Private, Commercial and Competition Law
This work is licensed under the Creative Commons Attribution-NonCommercial 4.0 License.