Have a personal or library account? Click to login
Intelligent AML systems: using deep learning to detect financial fraud Cover

Intelligent AML systems: using deep learning to detect financial fraud

Open Access
|Dec 2025

References

  1. ‘Anti-money laundering’ (no date) Wikipedia. Available at: https://en.wikipedia.org/wiki/Anti%E2%80%93money_laundering (Accessed: 18 January 2025).
  2. Bi, W., Trinh, T.K. and Fan, S. (2024) ‘Machine learning-based pattern recognition for anti-money laundering in banking systems’, Journal of Advanced Computing Systems, 4(11), pp. 30–41. Available at: https://doi.org/10.69987/JACS.2024.41103
  3. Boersma, M. (2024a) ‘PyTorch geometric: Elliptic(++) dataset’ (2024) Medium, 3 April. Available at: https://medium.com/@marcelboersma/elliptic-fbc7e008db2b (Accessed: 27 January 2025).
  4. Boersma, M. (2024b) ‘Unveiling Bitcoin network secrets with the Elliptic++ dataset: from transactions to graph neural networks’, Medium, 29 March. Available at: https://medium.com/@marcelboersma/unveiling-bitcoin-network-secrets-with-the-elliptic-dataset-from-transactions-to-graph-neural-384edd61ec85 (Accessed: 27 January 2025).
  5. Charaia, V., Chochia, A. and Lashkhi, M. (2020) ‘The impact of FDI on economic development: the case of Georgia’, TalTech Journal of European Studies, 10(2), pp. 96–116. Available at: https://doi.org/10.1515/bjes-2020-0017
  6. Charaia, V., Chochia, A. and Lashkhi, M. (2021) ‘Promoting fintech financing for SME in S. Caucasian and Baltic States during the COVID-19 global pandemic’, Journal of Business Management and Economics Engineering, 19(2), pp. 358–372. Available at: https://doi.org/10.3846/bmee.2021.14755
  7. Chochia, A., Kerikmäe, T. and Skvarciany, V. (2023) ‘Global economic challenges for sustainable entrepreneurs’, TalTech Journal of European Studies, 13(1), pp. 3–7. Available at: https://doi.org/10.2478/bjes-2023-0001
  8. Elliptic (2024) ‘Our new research: enhancing blockchain analytics through AI’, 1 May. Available at: https://www.elliptic.co/blog/our-new-research-enhancing-blockchain-analytics-through-ai (Accessed: 1 February 2025).
  9. ‘Elliptic++ dataset: a graph network of Bitcoin blockchain transactions and wallet addresses’ (2025) Github. Available at: https://github.com/git-disl/EllipticPlusPlus (Accessed: 27 January 2025).
  10. ‘FinTorch’ (2025) Github. Available at: https://github.com/AI4FinTech/FinTorch/ (Accessed: 27 January 2025).
  11. ForkLog (2024) ‘Elliptic navchyla shi vyiavliaty vidmyvannia hroshei cherez Bitcoin’, 2 May. Available at: https://forklog.com.ua/news/elliptic-navchyla-shivyyavlyaty-vidmyvannya-groshej-cherez-bitkoyin (Accessed: 23 January 2025).
  12. Gandhi, H., Tandon, K., Gite, S., Pradhan, B. and Alamri, A. (2024) ‘Navigating the complexity of money laundering: anti–money laundering advancements with AI/ML insights’, International Journal on Smart Sensing and Intelligent Systems, 17(1), pp. 1–29. Available at: https://doi.org/10.2478/ijssis-2024-0024
  13. Göksal, Ş.İ., Solarte-Vásquez, M.C. and Chochia, A. (2025) ‘The EU AI Act’s alignment within the European Union’s regulatory framework on artificial intelligence’, International and Comparative Law Review, 24(2), pp. 25–53. Available at: https://doi.org/10.2478/iclr-2024-0017
  14. ‘Graph neural network’ (no date) Wikipedia. Available at: https://en.wikipedia.org/wiki/Graph_neural_network (Accessed: 19 January 2025).
  15. Hovorushchenko, T., Boyarchuk, A. and Pavlova, O. (2019) ‘Ontology-based intelligent agent for semantic parsing the natural language specifications of software requirements’, International Journal on Information Technologies & Security, 11(2), pp. 59–71.
  16. Hovorushchenko, T., Moskalenko, A. and Osyadlyi, V. (2023) ‘Methods of medical data management based on blockchain technologies’, Journal of Reliable Intelligent Environments, 9(1), pp. 5–16. Available at: https://doi.org/10.1007/s40860-022-00178-1
  17. Javaid, H.A. (2024) ‘Revolutionizing AML: how AI is leading the charge in detection and prevention’, Journal of Innovative Technologies, 7(1), pp. 1–16.
  18. Kitov, A.V. (2024) Development and research of the use of neural networks in the tasks of detecting fraudulent transactions of the Ethereum network: explanatory note to the qualification work of a higher education applicant at the second (master’s) level, Specialty 122 Computer Science. Kharkiv: Ministry of Education and Science of Ukraine, National University of Radio Electronics.
  19. Koduru, L. (2025) ‘Driving business success through AI-driven fraud detection innovations in AML and risk monitoring systems’, in S. Kulkarni, M. Valeri and P. William (eds) Driving business success through eco-friendly strategies. IGI Global Scientific Publishing, pp. 115–130. Available at: https://doi.org/10.4018/979-8-3693-9750-3.ch006
  20. Konstantinidis, G. and Gegov, A. (2024) ‘Deep neural networks for anti-money laundering using explainable artificial intelligence’, in 2024 IEEE 12th International Conference on Intelligent Systems (IS), pp. 1–6. Available at: https://doi.org/10.1109/IS61756.2024.10705194
  21. Kotagiri, A. (2024) ‘AML detection and reporting with intelligent automation and machine learning’, International Machine Learning Journal and Computer Engineering, 7(7), pp. 1–17.
  22. Künnapas, K., Maslionkina, P., Hinno, R. and Liberts, R. (2025) ‘Current AI applications by Estonian tax authorities and use case scenarios’, TalTech Journal of European Studies, 15(1), pp. 179–208. Available at: https://doi.org/10.2478/bjes-2025-0010
  23. Lashkhi, M., Charaia, V., Boyarchuk, A. and Ebralidze, L. (2022) ‘The impact of fintech on financial institutions: the case of Georgia’, TalTech Journal of European Studies, 12(1), pp. 20–42. Available at: https://doi.org/10.2478/bjes-2022-0010
  24. Lyeonov, S., Draskovic, V., Kubaščikova, Z. and Fenyves, V. (2024) ‘Artificial intelligence and machine learning in combating illegal financial operations: bibliometric analysis’, Human Technology, 20(2), pp. 325–360. Available at: https://doi.org/10.14254/1795-6889.2024.20-2.5
  25. Oyedokun, O., Ewim, S.E. and Oyeyemi, O.P. (2024) ‘A comprehensive review of machine learning applications in AML transaction monitoring’, International Journal of Engineering Research and Development, 20(11), pp. 730–743.
  26. Pazos, J.F.M., González, J.G., Lorenzo, D.B., Morales, J.A.R. and Álvarez, M.M.R. (2024) ‘Fraud transaction detection for anti-money laundering systems based on deep learning’, Journal of Emerging Computer Technologies, 3(1), pp. 29–34. Available at: https://doi.org/10.57020/ject.1428146
  27. Raj, M., Khan, H., Kathuria, S., Chanti, Y. and Sahu, M. (2024) ‘The use of artificial intelligence in anti-money laundering (AML)’, in 2024 3rd International Conference on Sentiment Analysis and Deep Learning (ICSADL), pp. 272–277. Available at: https://doi.org/10.1109/ICSADL61749.2024.00050
  28. Weber, M., Domeniconi, G., Chen, J., Weidele, D.K.I., Bellei, C., Robinson, T. and Leiserson, C.E. (2019) ‘Anti-money laundering in Bitcoin: experimenting with graph convolutional networks for financial forensics’, ArXiv. Available at: https://doi.org/10.48550/arXiv.1908.02591
  29. Wu, R., Ma, B, Jin, H., Zhao, W., Wang, W. and Zhang, T. (2023) ‘GRANDE: a neural model over directed multigraphs with application to anti-money laundering’, in 2022 IEEE International Conference on Data Mining (ICDM), pp. 558–567. Available at: https://doi.org/10.48550/arXiv.2302.02101
  30. Zolkin, V., Chochia, A. and Hoffmann, T. (2023) ‘Automated decision-making in the EU Member State’s public administration: the compliance of automated decisions of the Estonian Unemployment Insurance Fund with Estonian administrative procedure law’, European Studies, 10(2), pp. 178–202. Available at: https://doi.org/10.2478/eustu-2023-0017
DOI: https://doi.org/10.2478/bjes-2025-0032 | Journal eISSN: 2674-4619 | Journal ISSN: 2674-4600
Language: English
Page range: 102 - 122
Published on: Dec 12, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 2 issues per year

© 2025 Olga Pavlova, Viacheslav Askerov, Bohdan Tomchyshen, Tetiana Hovorushchenko, published by Tallinn University of Technology
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.