References
- Asprey, M. M. (2003), Plain Language for Lawyers, Annandale, N.S.W.: Federation Press.
- Cabanlit, M. A. & Espinosa, K. J. (2014), ‘Optimizing N-gram based text feature selection in sentiment analysis for commercial products in Twitter through polarity lexicons,’ in Information, Intelligence, Systems and Applications, IISA 2014, The 5th International Conference, pp. 94–97. https://doi.org/10.1109/IISA.2014.6878767
- Chiche, A. & Yitagesu, B. (2022), ‘Part of speech tagging: A systematic review of deep learning and machine learning approaches,’ Journal of Big Data, vol. 9, art. 10, pp. 1–25. https://doi.org/10.1186/s40537-022-00561-y
- Cutts, M. (1999), The Plain English Guide, Oxford: Oxford University Press.
- Dale, E. & Chall, J. S. (1948), ‘A formula for predicting readability,’ in Educational Research Bulletin, vol. 27, no. 1, pp. 11–20.
- Dobos, Cs. (2015), ‘Nyelven belüli fordítás és tisztességes jogi eljárás’ [Intralingual translation and fair trial], in M. Szabó (ed.) A jog nyelvi dimenziója [The linguistic dimension of law], Miskolc, Magyarország: Bíbor Kiadó, pp. 215–226.
- Dubay, W. H. (2004), The Principles of Readability, Costa Mesta: Impact Information. fastText (n.d., a), ‘Text classification.’ Retrieved from https://fasttext.cc/docs/en/supervised-tutorial.html [accessed Nov 2022]
- fastText (n.d., b), ‘Word vectors for 157 languages.’ Retrieved from https://fasttext.cc/docs/en/crawl-vectors.html [accessed Nov 2022]
- fastText (2020), ‘How to turn. bin to. vec #1082,’ GitHub repository forum. Retrieved from https://github.com/facebookresearch/fastText/issues/1082 [accessed Nov 2022]
- Felsenfeld, C.; Cohen, D. S. & Fingerhut, M. (1981), ‘The Plain English movement in the United States: Comments,’ Canadian Business Law Journal, vol. 6, pp. 408–452.
- Garner, B. A. (2001), Legal Writing in Plain English: A Text with Exercises, Chicago: University of Chicago Press. https://doi.org/10.7208/chicago/9780226284200.001.0001
- HuSpaCy (n.d.), Core Hungarian model for HuSpaCy, Hugging Face. Retrieved from https://huggingface.co/huspacy/hu_core_news_lg [accessed Nov 2022]
- HuSpaCy (2022), HuSpaCy: An industrial-strength Hungarian natural language processing toolkit, Github Repository. Retrieved from https://github.com/huspacy/huspacy [accessed Nov 2022]
- Joulin, A.; Grave, E.; Bojanowski, P. & Mikolov, T. (2016), ‘Bag of tricks for efficient text classification,’ ArXiv preprint. https://doi.org/10.48550/arXiv.1607.01759
- Jurafsky, D. & Martin, J. H. (n.d.), Speech and Language Processing, 3rd ed. draft. Retrieved from https://web.stanford.edu/~jurafsky/slp3/ [accessed 10 Jul 2022]
- Kas, B. & Lukács, A. (2012), ‘Processing relative clauses by Hungarian typically developing children,’ Language and Cognitive Processes, vol. 27, no. 4, pp. 500–538. https://doi.org/10.1080/01690965.2011.552917
- Kúria (n.d.), ‘A magyar jogszabályok rövidítései’ [Abbreviations used in Hungarian legislation]. Retrieved from https://kuria-birosag.hu/sites/default/files/joggyak/3_melleklet.pdf [accessed Nov 2022]
- Liu, B. (2012), Sentiment Analysis and Opinion Mining, Synthesis Lectures on Human Language Technologies, no. 5, Cham: Springer. https://doi.org/10.1007/978-3-031-02145-9
- Minya, K. & Vinnai, E. (2018), ‘Hogyan írjunk érthetően? kilendülés a jogi szaknyelv komfortzónájából’ [How to write clearly? Getting out of the comfort zone of legal jargon], Magyar Jogi Nyelv [Hungarian legal language], no. 1, pp. 13–18.
- Orosz, Gy.; Szántó, Zs.; Berkecz, P.; Szabó, G. & Farkas, R. (2022), ‘HuSpaCy: an industrial-strength Hungarian natural language processing toolkit,’ in G. Berend, G. Gosztolya & V. Vincze (eds.) XVIII. Magyar Számítógépes Nyelvészeti Konferencia [Hungarian Computational Linguistics Conference], Szeged, Magyarország: Szegedi Tudományegyetem, Informatikai Intézet, pp. 59–73.
- Pléh, Cs. (2013), A lélek és a nyelv [The soul and language], Budapest, Magyarország: Akadémiai Kiadó. https://doi.org/10.1556/9789630596817
- Pléh, Cs. & Lukács, Á. (2014), Pszicholingvisztika [Psycholinguistics], Budapest, Magyarország: Akadémiai Kiadó. https://doi.org/10.1556/9789630594998
- RGAI (n.d.), ‘magyarlanc: a toolkit for linguistic processing of Hungarian,’ MTASZTE Research Group on Artificial Intelligence. Retrieved from https://rgai.inf.u-szeged.hu/magyarlanc [accessed Nov 2022]
- Sammut, C. & Webb, G. I. (2011), ‘TF–IDF,’ in C. Sammut & G. I. Webb (eds.) Encyclopedia of Machine Learning, Boston, MA: Springer. https://doi.org/10.1007/978-0-387-30164-8
- scikit-learn (n.d.). Retrieved from https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html [accessed Nov 2022]
- Solarte-Vasquez, M. C. & Hietanen-Kunwald, P. (2020a), ‘Transaction design standards for the operationalisation of fairness and empowerment in proactive contracting,’ International and Comparative Law Review / Mezinárodní a Srovnávací Právní Revue, vol. 20, no. 1, pp. 180–200. https://doi.org/10.2478/iclr-2020-0008
- Solarte-Vasquez, M. C. & Hietanen-Kunwald, P. (2020b), ‘Responsibility and responsiveness in the design of digital and automated dispute resolution processes,’ in 23rd International Legal Informatics Symposium (IRIS 2020), University of Salzburg, Salzburg, Austria, February 27–29, 2020, pp. 451–459. https://doi.org/10.38023/2038d4dc-d497-49eb-9179-0d2c77f64132
- Solarte-Vasquez, M. C.; Järv, N. & Nyman-Metcalf, K. (2016), ‘Usability factors in transactional design and smart contracting,’ in T. Kerikmäe & A. Rull (eds.) The Future of Law and eTechnologies, Cham: Springer, pp. 149–176. https://doi.org/10.1007/978-3-319-26896-5_8
- Text to sentence splitter (n.d.), GitHub Repository. Retrieved from https://github.com/mediacloud/sentence-splitter [accessed Nov 2022]
- Tiersma, P. M. & Solan, L. M., eds. (2012), The Oxford Handbook of Language and Law, New York: Oxford University Press. https://doi.org/10.1093/oxfordhb/9780199572120.001.0001
- Tikk, D., ed. (2007), Szövegbányászat [Text mining], Budapest, Magyarország: Typotex Kiadó.
- Tóth, J. (2019), ‘Tudnak-e a jogászok érthetően fogalmazni, avagy nem is kell azt tudni?’ [Can lawyers write clearly, or do they not need to?] Magyar Jogi Nyelv [Hungarian legal language], no. 1, pp. 31–37.
- Üveges, I. (2020), ‘Automatizálható a közérthető megfogalmazás? Jog, számítógépes nyelvészet és pszicholingvisztika találkozása’ [Can Plain Language be automated? Intersection between law, computational linguistics and psycholinguistics], Magyar Jogi Nyelv [Hungarian legal language], no. 1, pp. 1–8.
- Vinnai, E. (2014), ‘A magyar jogi nyelv kutatása’ [Research on the Hungarian legal language], Glossa Iuridica, no. 1, pp. 29–48.
- Vinnai, E. (2018), ‘Megértette a figyelmeztetést? A figyelmeztetések és tájékoztatások közlése a büntetőeljárásokban’ [Did you understand the warning? Communication of warnings and information in criminal proceedings], in M. Szabó & E. Vinnai (eds.) A törvény szavai: Az OTKA-112172 kutatási zárókonferencia anyaga Miskolc [Words of the law: Proceedings of the OTKA-112172 final research conference], ME – MAB, 2018. május 25, Miskolc, Magyarország: Bíbor Kiadó, pp. 281–295.
- Willerton, R. (2015), Plain Language and Ethical Action: A Dialogic Approach to Technical Content in the 21st Century, New York: Routledge. https://doi.org/10.4324/9781315796956
- Zsibrita, J.; Vincze, V. & Farkas, R. (2013), ‘magyarlanc: A toolkit for morphological and dependency parsing of Hungarian,’ in R. Mitkov, G. Angelova & K. Bontcheva (eds.) Proceedings of RANLP 2013, Hissar, Bulgaria: INCOMA Ltd., pp. 763–771.