Have a personal or library account? Click to login
Compatibility of Fluid Maxwell Equations with Interactions Between Oscillating Bubbles Cover
Open Access
|Mar 2025

References

  1. Kambe T., A new formulation of equations of compressible fluids by analogy with Maxwell’s equations, Fluid Dyn. Res. 42, 055502, 2010.
  2. Jamati F., Analogy between vortex waves and EM waves, Fluid Dyn. Res. 50 065511, 2018.
  3. Arbab A.I., The analogy between electromagnetism and hydrodynamics, Physics Essays 24, 254-259, 2011.
  4. Ivanova E.A., Modeling of electrodynamic processes by means of mechanical analogies, Z Angew Math Mech. 101:e202000076, 2021.
  5. Dmitriev V.P., Mechanics of electromagnetic interactions, arXiv:physics/0612210.
  6. Dmitriev V.P., Towards an Exact Mechanical Analogy of Particles and Fields, Nuov. Cim. 111 A, N5, pp.501-511, 1998, https://doi.org/10.1007/BF03185584.
  7. Wang X.S., Derivation of Maxwell’s equations based on a continuum mechanical model of vacuum and a singularity model of electric charges, Prog. Phys. 2, 111-120, 2008.
  8. Simeonov L.S., Mechanical Model of Maxwell’s Equations and of Lorentz Transformations, Foundations of Physics, volume 52, article number 52, 2023.
  9. Bjerknes V.F.K., Fields of Force, Columbia University Press, 1906
  10. Doinikov A.A., Acoustic radiation forces: Classical theory and recent advances, Recent Res. Devel. Acoustics, 1, 39-67, 2003.
  11. Barbat T., Ashgriz N., Liu C.S., Dynamics of two interacting bubbles in an acoustic field, J. Fluid Mech. 389, 137-168, 1999.
  12. Simaciu I., Borsos Z., Dumitrescu Gh., Silva G.T., Bărbat T., The acoustic force of electrostatic type, Bul. Inst. Politeh. Iaşi, Secţ. Mat., Mec. teor., Fiz. 65 (69), No 2, pp. 15-28, 2019; arXiv:1711.03567v1, 2017.
  13. Simaciu I., Borsos Z., Dumitrescu Gh., Baciu A., Planck-Einstein-de Broglie type relations for acoustic waves, arXiv:1610.05611, 2016.
  14. Simaciu I., Borsos Z., Baciu A., Nan G., The Acoustic World: Mechanical Inertia of Waves, Bul. Inst. Politeh. Iaşi, Secţ. Mat., Mec. Teor., Fiz. 62 (66), No 4, pp. 52-63, 2016.
  15. Simaciu I., Dumitrescu Gh., Borsos Z., Brădac M., Interactions in an Acoustic World: Dumb Hole, Adv. High Energy Phys.,Vol. 2018, article ID 7265362, 2018.
  16. Simaciu I., Borsos Z., Dumitrescu Gh., Acoustic lens associated with a radial oscillating bubble, Bul. Inst. Politeh. Iaşi, Secţ. Mat., Mec. teor., Fiz. 66 (70), No 2, pp. 9-15, 2020; arXiv:1811.08738, 2018.
  17. Simaciu I., Borsos Z., Dumitrescu Gh., Mach’s Principle in the Acoustic World, arXiv: 1907.05713, 2019; Buletinul Institutului Politehnic din Iaşi, Secţia Matematică. Mecanică Teoretică. Fizică, Volumul 67 (71), No. 4, 59-69, 2021.
  18. Simaciu I., Borsos Z., Drafta V., Dumitrescu Gh., Phenomena in bubbles cluster, arXiv:2212.12790, 2023.
  19. Landau L.D., Lifshitz E.M., Fluid Mechanics, Vol. 6, Third Rev. Ed., 1966.
  20. Kambe T., Elementary Fluid Mechanics, EFM-Nankai, 2005.
  21. Matthews M.R., Anderson B.P., Haljan P.C., Hall D.S., Wieman C.E., Cornell E.A., Vortices in a Bose-Einstein Condensate, Phys. Rev. Lett. 83 (13), pp. 2498 – 2501, 1999.
  22. Weiler C.N., Neely T.W., Scherer D.R., Bradley A.S., Davis M.J., Anderson B.P., Spontaneous vortices in the formation of Bose-Einstein condensates, Nature 455 (7215), 948–951, 2009.
  23. Chena L.Y., Zhanga L.X., Shaoa X.M., The motion of small bubble in the ideal vortex flow, Procedia Engineering 126, pp. 228 – 231, 2015.
  24. Oweis G.F., van der Hout I. E., Iyer C., Tryggvason G., Ceccio S.L., Capture and inception of bubbles near line vortices, Physics of Fluids 17(2): 022105-022105-14. http://hdl.handle.net/2027.42/87832, 2005.
  25. Ruban V.P., Bubbles with attached quantum vortices in trapped binary Bose-Einstein condensates, Journal of Experimental and Theoretical Physics, Vol. 133, No. 6, pp. 779-785, https://doi.org/10.1134/S1063776121120062, 2021.
  26. Jackson J.D., Classical Electrodynamics, 2nd ed., Wiley, New York, 1975.
  27. Sadighi-Bonabi R., Rezaee N., Ebrahimi H., Mirheydari M., Interaction of two oscillating sonoluminescence bubbles in sulfuric acid, Physical Review E 82, 016316, 2010.
  28. Barut A.O., Zanghi N., Classical Model of the Dirac Electron, Phys. Rev. Lett. 52, pp. 2009-2012, 1984.
  29. Dirac P.A.M., The quantum theory of the electron, Proc. Roy. Soc. Lond. A, 117, 610-624, 1928.
  30. Tiwari S.C., Anomalous magnetic moment and vortex structure of the electron, Modern Physics Letters A, Vol. 33, No. 31, 1850180, 2018.
  31. Zavtrak S.T., A classical treatment of the long-range radiative interaction of small particles, Journal of Physics A, General Physics 23 (9), 1493, 1999.
  32. Doinikov A.A., Zavtrak S.T., Radiation forces between two bubbles in a compressible liquid, J. Acoust. Soc. Am. 102 (3), 1997.
  33. Kambe T., Global Journal of Science Frontier Research: A Physics and Space Science, Volume 21, Issue 4, Version 1, 2021.
Language: English
Page range: 53 - 65
Submitted on: Oct 25, 2024
Accepted on: Feb 19, 2025
Published on: Mar 21, 2025
Published by: Gheorghe Asachi Technical University of Iasi
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2025 Ion Simaciu, Gheorghe Dumitrescu, Zoltan Borsos, Viorel Drafta, published by Gheorghe Asachi Technical University of Iasi
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.