References
- Simaciu I., Borsos Z., Dumitrescu Gh., Silva G. T. and Bărbat T., Acoustic scattering-extinction cross section and the acoustic force of electrostatic type, Buletinul Institutului Politehnic din Iaşi, Secţia Matematică. Mecanică Teoretică. Fizică, Volumul 65 (69), No. 2, 15-28, 2019; arXiv:1711.03567, 2017.
- Simaciu I., Dumitrescu Gh., Borsos Z. and Drafta V., Compatibility of Maxwell’s fluid equations with interactions between oscillating bubbles, arXiv:2310.06875v2, 2024.
- Simaciu I., Drafta Gh., Borsos Z. and Dumitrescu Gh., Vortexes as systems specific to the Acoustic World, arXiv:2405.00052, 2024.
- Kambe T., Elementary Fluid Mechanics, Nankai-2005, DOI: 10.1142/5895, 2005.
- Kambe T., A new representation of rotational flow fields satisfying Euler’s equation of an ideal compressible fuid, Fluid Dynamics Research 45, 015505, 2013.
- Barut A. O., Zanghi N., Classical Model of the Dirac Electron, Phys. Rev. Lett. 52, pp. 2009-2012, 1984.
- Simaciu I. and Ciubotariu C., Classical model of Electron in Stochastic Electrodinamics, Rev. Mex. Fis. 47(4), 392, 2001.
- Simaciu I., Borsos Z., Drafta V. and Dumitrescu Gh., Electrostatic Interaction in Stochastic Electrodynamics, Buletinul Institutului Politehnic din Iaşi, Secţia Matematică. Mecanică Teoretică. Fizică, Volumul 68 (72), No. 4, 29-40, 2022.
- Chen Y. et al, Possible Manifestation of a Non-Pointness of the Electron in e+e− Annihilation Reaction at Centre of Mass Energies 55-207 GeV, Physics, 5(3), 752-783, DOI: https://doi.org/10.3390/physics5030048, 2023.
- Angelakis D. G., Huo M-X., Kyoseva E. and Kwek L. C., Luttinger liquid of photons and spin-charge separation in hollow-core fibers, Phys. Rev. Lett. 106, 153601, 2011.
- Vianez P. M. T. et al, Observing separate spin and charge Fermi seas in a strongly correlated one-dimensional conductor, Science Advances, Vol 8, Issue 24, 2022.
- Schlappa J., Wohlfeld K., et al., Spin-orbital separation in the quasi-one-dimensional Mott insulator 11 Sr2CuO3, Nature, 485 (7396), 82-5, 2012.
- Rivas M., The center of mass and center of charge of the electron, Journal of Physics Conference Series 615 (1), DOI:10.1088/1742-6596/615/1/012017, 2012.
- Tiwari S. C., Anomalous magnetic moment and vortex structure of the electron, Modern Physics Letters A Vol. 33, No. 31, 1850180, https://doi.org/10.1142/S0217732318501808, 2018.
- Barnett S. M., Relativistic Electron Vortices, Physical Review Letters, 118, 114802, DOI: 10.1103/PhysRevLett.118.114802, 2017.
- Bliokh K. et al., Theory and applications of free-electron vortex states, Physics Reports 690 (3), DOI:10.1016/j.physrep.2017.05.006, 2017.
- Ruetsch G. R., Meiburg E., On the motion of small spherical bubbles in two-dimensional vortical flows, Phys. Fluids A 5 (10), p. 2326,, https://doi.org/10.1063/1.858750, 1993.
- Maxey M. R., Riley J. J., Equation of motion for a small rigid sphere in a nonuniform flow, Phys. Fluids 26, 883–889, https://doi.org/10.1063/1.864230, 1983.
- Raju N., Meiburg E., Dynamics of small, spherical particles in vortical and stagnation point flow fields, Physics of Fluids 9, 299–314. https://doi.org/10.1063/1.869150, 1997.
- Eloy Ch., Le Dizès St., Stability of the Rankine vortex in a multipolar strain field, Physics of Fluids, 1 3(3), 660-676, DOI: 10.1063/1.1345716, 2001.
- Landau L. D., Lifshitz E. M., Fluid Mechanics, Vol. 6, Third Rev. Ed., 1966.
- Leighton T. G., The Acoustic Bubble, Academic Press, 1994.
- Kambe T., A new formulation of equations of compressible fluids by analogy with Maxwell’s equations, Fluid Dyn. Res. 42, 055502, DOI: 10.1088/0169-5983/42/5/055502, 2010.
- Mann R., An Introduction to Particle Physics and the Standard Model, CRC Press, 2010.
- Shariff K., Leonard A., Vortex rings, Ann. Rev. Fluid Mech. 24, 235–79, 1992.
- Lundgren T. S., Mansour N. N., Vortex ring bubbles, J. Fluid Nech., vol. 224, pp. 177-196, DOI: https://doi.org/10.1017/S0022112091001702, 1991.