Have a personal or library account? Click to login
Quantitative Analysis of Secondary Bjerknes Forces in Various Liquids Cover

References

  1. Simaciu I., Borsos Z., Dumitrescu Gh., Silva G.T. and Bărbat T., Acoustic scattering-extinction cross section and the acoustic force of electrostatic type, arXiv:1711.03567V2, 2017.
  2. Simaciu I., Dumitrescu Gh. and Borsos Z., Acoustic force of the gravitational type, arXiv:1905.03622, 2019.
  3. Simaciu I., Borsos Z. and Dumitrescu Gh., Acoustic gravitational interaction revised, arXiv:2206.00435v1, 2022.
  4. Simaciu I., Dumitrescu Gh., Borsos Z., Baciu A. and Nan G., Acoustic Scattering-Absorption Cross Section of Electrostatic Type, Buletinul Institutului Politehnic din Iaşi, Secţia Matematică. Mecanică Teoretică. Fizică, Volumul 65 (69), No. 2, 29-38, 2019.
  5. Jackson J.D., Classical Electrodynamics, Second Edition (2nd Edition), Wiley, New York, 1975.
  6. Simaciu I., Borsos Z., Drafta V. and Dumitrescu Gh., Electrostatic Interaction in Stochastic Electrodynamics, Buletinul Institutului Politehnic din Iaşi, Secţia Matematică. Mecanică Teoretică. Fizică, Vol. 65 (69), No. 2, 29-38, 2022; arXiv:2106.04401v1.
  7. Simaciu I., Borsos Z., Dumitrescu Gh. and Drafta V., Gravitational Interaction Mediated by Classical Zero Point Field, Buletinul Institutului Politehnic din Iaşi, Secţia Matematică. Mecanică Teoretică. Fizică, Vol. 68 (72), No. 3, 29-38, 2022; arXiv:2106.05849.
  8. Simaciu I., Dumitrescu Gh. and Borsos Z., Mach’s Principle in the Acoustic World, Buletinul Institutului Politehnic din Iaşi, Secţia Matematică. Mecanică Teoretică. Fizică, Vol. 67 (71), No. 4, 59-69, 2021; arXiv: 1907.05713.
  9. Doinikov A.A., Translational motion of two interacting bubbles in a strong acoustic field, Physical Review E, Vo. 64, 0263XX, 2001.
  10. Klaasen B., Verhaeghe F., Blanpain B., Fransaer J., A study of gas bubbles in liquid mercury in a vertical Hele-Shaw cell, Exp. Fluids, vol. 55: 1652, 2014.
  11. Donnelly R.J. Barenghi C.F., The Observed Properties of Liquid Helium at the Saturated Vapor Pressure, Journal of Physical and Chemical Reference Data 27, 1217-1274, 1998, https://doi.org/10.1063/1.556028.
  12. Arp V.D., McCartyR.D., Friend D.G., Thermophysical Properties of Helium-4 from 0.8 to 1500 K with Pressures to 2000 MPa, NIST Technical Note 1334 (revised), 1998.
  13. Noga R., De Prada C., First principles modeling of the Large Hadron Collider’s (LHC) Superfluid Helium Cryogenic Circuit, Proceedings of 20th European Modeling and Simulation Symposium (EMSS08), 2008.
  14. Brooks J.S. and Donnelly R.J., The calculated thermodynamic properties of superfluid helium-4, J. Phys. Chem. Ref. Data, 6 (1), 51-104, 1977.
  15. Eddington A.S., Preliminary Note on the Masses of the Electron, the Proton, and the Universe, Mathematical Proceedings of the Cambridge Philosophical Society, 27 (1), pp. 15-19, 1931.
  16. Dirac P.A.M., The Large numbers hypothesis and the Einstein theory of gravitation, Proc. R. Soc. London, Ser. A 365, 19-30, 1979.
  17. de la Peña L., Cetto A.M., Estimate of Planck’s Constant from an Electromagnetic Mach Principle, Foundations of Physics Letters 10 (6), pp. 591-598, 1997.
Language: English
Page range: 69 - 87
Submitted on: Jan 17, 2024
Accepted on: Apr 9, 2024
Published on: Jul 6, 2024
Published by: Gheorghe Asachi Technical University of Iasi
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2024 Ion Simaciu, Zoltan Borsos, Viorel Drafta, Gheorghe Dumitrescu, published by Gheorghe Asachi Technical University of Iasi
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.