Have a personal or library account? Click to login
Physical Principles in Revealing the Working Mechanisms of Brain. Part V Cover
By: Nicolae Mazilu  
Open Access
|Dec 2023

References

  1. Adler R., Bazin M., Schiffer M., Introduction to General Relativity, McGraw-Hill, Inc. (1975).
  2. Noerdlinger P. D., Geodesics of Robertson-Walker Universes, Physical Review, Volume 186(5), pp. 1347 – 1351 (1969).
  3. Mazilu N., (a) The Physical Basis of Procopiu’s Quantization, to appear in Memoirs of the Scientific Sections of the Romanian Academy, Tome XLVI; prepublished at viXra:2308.0135v1; (b) The Instanton: a Conspicuous Case of Scale Transition, to be published (2023).
  4. Einstein A., (a) A New Formal Interpretation of Maxwell’s Field Equations of Electrodynamics, English translation of the German original from Sitzungsberichte der Preussischen Akademie der Wissenschaften, 1916, pp. 184 – 188; reproduced in The Collected Papers of Albert Einstein, Volume 6, Princeton University Press, as Document 27; (b) The Foundation of the General Theory of Relativity, English translation of the German original from Annalen der Physik, Volume 49, pp. 769 – 822; reproduced in The Collected Papers of Albert Einstein, Volume 6, Princeton University Press, as Document 30 (1916).
  5. Einstein A., Cosmological Considerations on the General Theory of Relativity, in The Principle of Relativity, a Collection of Original Memoirs on the Special and General Theory of Relativity, Dover Publications, 1923, 1952, 2003, English translation of the German original from Sitzungsberichte der Preussischen Akademie der Wissenschaften, 1917 (1917).
  6. Einstein A., Do Gravitational Fields Play an Essential Part in the Structure of the Elementary Particles of Matter?, The Collected Papers of Albert Einstein, Volume 7, Princeton University Press, Document 17; English translation of the German original from Sitzungberichte der Königlich Preussische Akademie der Wissenschaften, Berlin 1919, pp. 349 – 356 (1919).
  7. Renn J., Schemmel M., Gravitation in the Twilight of Classical Physics: the Promise of Mathematics, Volume 4 in The Genesis of General Relativity, Jürgen Renn Editor, Springer (2007).
  8. Mie G., Grundlagen einer Theorie der Materie, (Dritte Mitteilung, Schluss), Annalen der Physik, IV Folge, Band 40(1), pp. 1 – 66 (1913).
  9. Kasner E., (a) An Algebraic Solution of the Einstein Equations, Transactions of the American Mathematical Society, Volume 27(1), pp. 101 – 105; (b)Separable Quadratic Differential Forms and Einstein Solutions, Proceedings of the National Academy of the United States, Volume 11, pp. 95 – 96 (1925).
  10. Kasner E., (a) Einstein’s Theory of Gravitation: Determination of Field by Light Signals, American Journal of Mathematics, Volume 43(1), pp. 20 – 28(b) The Impossibility of Einstein Fields Immersed in Flat Space of Five Dimensions, American Journal of Mathematics, Volume 43(2), pp. 126 – 129; (c) Geometrical Theorems on Einstein’s Cosmological Equations, American Journal of Mathematics, Volume 43(4), pp. 217 – 221; this article is reproduced as a ‘Golden Oldie’ in the journal General Relativity and Gravitation, Volume 40(4), pp. 865 – 876 (1921):
  11. Mazilu N., The Case for Procopiu’s Quantum, Memoirs of the Scientific Sections of the Romanian Academy, Tome XLV, pp. 51 – 124; prepublished at viXra:2207.0054v1 (2022).
  12. Mazilu N., The Fundamental Physics of de Broglie’s Waves: Part One, viXra:2012.0021 (2020).
  13. Feynman R. P., Leighton R. B., Sands M., The Feynman Lectures on Physics, Addison-Wesley Publishing Company, Reading, MA (1977).
  14. Feynman R. P., Space-Time Approach to Non-Relativistic Quantum Mechanics, Reviews of Modern Physics, Volume 20(2), pp. 367 – 387 (1948).
  15. Feynman R. P., The Theory of Positrons, Physical Review, Volume 76(6), pp. 749 – 759 (1949).
  16. Fresnel A., Considérations Mécaniques sur la Polarisation de la Lumière, Annales de Chimie et de Physique, Tome 17, pp. 179–196; reprinted in Oeuvres Complètes, Imprimerie Impériale, Paris 1866, Tome Premier, pp. 629 – 645 (can be found at Gallica.bnf.fr) (1821).
  17. Fresnel A., Mémoire sur la Diffraction de la Lumière, Mémoirs de l’Académie des Sciences de l’Institute de France, Tome 5, pp. 339–475; reprinted in Oeuvres Complètes, Imprimerie Impériale, Paris 1866, Tome Premier, pp. 247–382 (can be found at Gallica.bnf.fr) (1826).
  18. Fresnel A., Mémoire sur la Double Réfraction, Mémoirs de l’Académie des Sciences de l’Institute de France, Tome 7, pp. 45–176; reproduced in Oeuvres Complètes, Imprimerie Impériale, Paris 1866, (can be found at Gallica.bnf.fr) (1827).
  19. Hooke R., Micrographia, or Some Physiological Descriptions of Minute Bodies Made by Magnifying Glasses, Martyn & Allestry, London (1665).
  20. Hebb D. O., The Organization of Behavior: a Neuropsychological Theory, Lawrence Erlbaum Associates, Publishers, Mahwah, New Jersey (2002).
  21. Milner P. M., The Cell Assembly, Psychological Review, Volume 64(4), pp. 242 – 252 (1957).
  22. Löwel S., Singer W., Selection of Intrinsic Horizontal Connections in the Visual Cortex by Correlated Neuronal Activity, Science, Volume 255, pp. 209 – 212 (1992).
  23. Goshen (Goldstein) S., Lipkin H. J., (a) A Simple Independent-Particle System Having Collective Properties, Annals of Physics, Volume 6(4), pp. 301 – 309; (b) A Simple Model of a System Possessing Rotational States, Ibid., pp. 310 – 318 (1959).
  24. Schrödinger E., Collected Papers on Wave Mechanics, Blackie & Son Limited, London (1928).
  25. Hanbury Brown R., Twiss R. Q., A Test of a New Type of Stellar Interferometer on Sirius, Nature (London), Volume 178, pp. 1046 – 1048 (1956).
  26. Hanbury Brown R., Twiss R. Q., Interferometry of the Intensity Fluctuations in Light I. Basic Theory: the Correlation between Photons in Coherent Beams of Radiation, Proceedings of the Royal Society of London, Series A, Volume 242, pp. 300 – 324 (1957).
  27. Mazilu N., Agop M., Mercheș I., Scale Transitions as Foundations of Physics, World Scientific, Co. Pte. Ltd., Singapore (2021).
  28. Gabor D., A New Microscopic Principle, Nature, Volume 161, pp. 777 – 778 (1948).
  29. Gabor D., Microscopy by Reconstructed Wave-Fronts, Proceedings of the Royal Society of London, Series A, Volume 197, pp. 454 – 487 (1949).
  30. Longuet-Higgins H. C., (a) Holographic Model of Temporal Recall, Nature, Volume 217, p. 104; (b) The Non-Local Storage of Temporal Information, Proceedings of the Royal Society of London, Series B, Volume 171, pp. 327 – 334 (1968):
  31. Needham T., Visual Complex Analysis, Clarendon Press, Oxford (2001).
  32. Cariñena J. F., Marmo G., Nasarre J., The Nonlinear Superposition Principle and the Wei-Norman Method, International Journal of Modern Physics A, Volume 13(21), pp. 3601 – 3627 (1998).
  33. Darwin C. G., Free Motion in the Wave Mechanics, Proceedings of the Royal Society of London Series A, Volume 117, pp. 258 – 293 (1927):
  34. Schutz B. F., Geometrical Methods of Mathematical Physics, Cambridge University Press, Cambridge, UK (1982).
  35. Mazilu N., Agop M., Skyrmions – a Great Finishing Touch to Classical Newtonian Philosophy, Nova Publishers, New York (2012).
  36. Edelman G. M., Cell-Adhesion Molecules: a Molecular Basis for Animal Form, Scientific American, Volume 250(4), pp. 118 – 129 (1984).
  37. Edelman G. M., Topobiology. An Introduction to Molecular Embriology, Basic Books, A Division of HarperCollins Publishers, Inc. (1988).
Language: English
Page range: 67 - 94
Submitted on: Oct 12, 2023
Accepted on: Nov 27, 2023
Published on: Dec 29, 2023
Published by: Gheorghe Asachi Technical University of Iasi
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2023 Nicolae Mazilu, published by Gheorghe Asachi Technical University of Iasi
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.