Have a personal or library account? Click to login
Effect of Gravitation Modulation on Viscoelastic Nonlinear Ferro-Convection Cover
Open Access
|Feb 2023

References

  1. [1] Gresho P.M., Sani R., The effects of gravity modulation on the stability of a heated fluid layer, J. of Fluid Mech, 40,783−806 (1970).10.1017/S0022112070000447
  2. [2] Vanishree R.K. and Siddheshwar P.G., Effect of rotation on thermal convection in an anisotropic porous medium with temperature-dependent viscosity, Transp. Porous Media, 81, 73−87 (2010).10.1007/s11242-009-9385-2
  3. [3] Saravanan S. and Arunkumar A., Convective instability in a gravity modulated anisotropic thermally stable porous medium, Int. J. Eng. Sci, 48, 742−750 (2010).10.1016/j.ijengsci.2010.03.004
  4. [4] Saravanan S. and Sivakumar T., Onset of filtration convection in a vibrating medium: The Brinkman model, Phys. Fluids, 22, 034104 (2010).10.1063/1.3358461
  5. [5] Saravanan S. and Sivakumar T., Thermo vibrational instability in a fluid saturated an isotropic porous medium, ASME J. Heat Transf, 133, 051601.1–051601.9 (2011).10.1115/1.4003013
  6. [6] Siddheshwar P.G. and others, Analytical study of nonlinear double diffusive convection in a porous medium with temperature modulation/gravity modulation, Transp. Porous Media, 91, 585−604 (2012).10.1007/s11242-011-9861-3
  7. [7] Siddheshwar P.G. and others, Study of heat transport by stationary magneto-convection in a Newtonian liquid under temperature or gravity modulation using Ginzburg-Landau model, Int. J. Non Linear Mech, 47, 418−425 (2012).10.1016/j.ijnonlinmec.2011.06.006
  8. [8] Bhadauria B.S. and others, Study of heat transport in a porous medium under G-jitter and internal heating effects, Transp. Porous Media, 96, 21–37 (2013).10.1007/s11242-012-0071-4
  9. [9] Bhadauria B.S. and others, Cross diffusion convection in a Newtonian fluids saturated rotating porous medium, Transp. Porous Media, 98(3) 683−697(2013).10.1007/s11242-013-0166-6
  10. [10] Srivastava A. and others, Heat transport in an anisotropic porous medium saturated with variable viscosity liquid under g-jitter and internal heating effects, Transp. Porous Media, 99, 359−376 (2013).10.1007/s11242-013-0190-6
  11. [11] Bhadauria B.S., Kiran P., Nonlinear thermal Darcy convection in a nanofluid satu-rated porous medium under gravity modulation, Advanced Science Letters, 20, 903−910 (2014).10.1166/asl.2014.5466
  12. [12] Bhadauria B.S., Kiran P., Weak nonlinear double diffusive magneto-convection in a Newtonian liquid under gravity modulation, J of Applied Fluid Mech., 8(4), 735−746 (2014).10.18869/acadpub.jafm.67.223.22740
  13. [13] Kiran P., Nonlinear thermal convection in a viscoelactic nanofluid saturated porous medium under gravity modulation, Ain Shams Eng, 7, 639−651 (2015).10.1016/j.asej.2015.06.005
  14. [14] Kiran P. and others, Thermal convection in a nanofluid saturated porous medium with internal heating and gravity modulation, J of nanofluid, 5(3), 321−327 (2016).10.1166/jon.2016.1220
  15. [15] Kiran P., Gravitational modulation effect on double-diffusive oscillatory convection in a viscoelastic fluid layer, J. of Nonofluids, 11, 01−13 (2022).10.1166/jon.2022.1827
  16. [16] Kiran P., Gravity modulation effect on weakly nonlinear thermal convection in a fluid layer bounded by rigid boundaries, Int J of Nonlinear Sci and Numerical Simulation 22, 01−24 (2022).10.1515/ijnsns-2021-0054
  17. [17] Manjula S.H., Kiran P., Narayanamoorthy S., The effect of gravity driven thermal instability in the presence of applied magnetic field and internal heating, AIP Conference Proceedings 2261(1), 030042 (2020)10.1063/5.0016996
  18. [18] Kiran P., Manjula S.H., Weakly nonlinear double-diffusive oscillatory magneto convection under gravity modulation, Sensor Letters 18(9), 725−738 (2020).10.1166/sl.2020.4281
  19. [19] Kiran P., Manjula SH., Roslan R., The Effect of gravity modulation on double diffusive convection in the presence of applied magnetic field and internal heat source, Adv Science Engand Medicine 12(6), 792−805 (2020).10.1166/asem.2020.2576
  20. [20] Manjula S.H., Kiran P., Bhadauria B.S., Throughflow and G-Jitter effects on oscillatory convection in a rotating porous medium, Adv Sci, Eng and Medicine 12 (6), 781−791 (2020).10.1166/asem.2020.2580
  21. [21] Manjula S.H., Kiran P., Throughflow and gravity modulation effects on double diffusive oscillatory convection in a viscoelastic fluid saturated porous medium, Advanced Science, Engineering and Medicine 12(5), 612−621 (2020).10.1166/asem.2020.2565
  22. [22] Pranesh S., Saha R., Three-Component Convection in a Vertically Oscillating Oldroyd-B Fluid with Cross Effects, Microgravity Sci. Technol., 34, 21 (2022).10.1007/s12217-022-09935-6
  23. [23] Bhadauria B.S., Kiran P., Heat transport in an anisotropic porous medium saturated with variable viscosity liquid under temperature modulation, Transp Porous Media, 100, 279−295 (2013).10.1007/s11242-013-0216-0
  24. [24] Bhadauria B.S., Kiran P., Weak nonlinear analysis of magneto–convection under magnetic field modulation, Physica Scripta, 89(9), 095209 (2014).10.1088/0031-8949/89/9/095209
  25. [25] Kiran P., Bhadauria B.S., Roslan R., The effect of throughflow on weakly nonlinear convection in a viscoelastic saturated porous medium, J of Nanofluids 9(1), 36-46 (2020).10.1166/jon.2020.1724
  26. [26] Bhadauria B.S., Kiran P., Effect of rotational speed modulation on heat transport in a fluid layer with temperature dependent viscosity and internal heat source, Ain Shams Engg J., 5(4), 1287−1297 (2014).10.1016/j.asej.2014.05.005
  27. [27] Kiran P., Bhadauria B.S., Chaotic convection in a porous medium under temperature modulation, Transp in Porous Media. 107, 745−763 (2015).10.1007/s11242-015-0465-1
  28. [28] Bhadauria B.S., Kiran P., Nonlinear Thermal Darcy Convection in a Nanofluid Saturated Porous Medium Under Gravity Modulation, Advanced Science Letters 20, 903−910 (2014).10.1166/asl.2014.5466
  29. [29] Kiran P., Nonlinear thermal convection in a viscoelastic nanofluid saturated porous medium under gravity modulation, Ain Shams Engg J., 7(2), 639−7651 (2016).10.1016/j.asej.2015.06.005
  30. [30] Kiran P., Throughflow and g-jitter effects on binary fluid saturated porous medium, Applied Math Mech. 36(10), 1285−1304 (2015).10.1007/s10483-015-1984-9
  31. [31] Kiran P., Throughflow and gravity modulation effects on heat transport in a porous medium, J of Applied Fluid Mech. 9(3), 1105−1113 (2016).10.18869/acadpub.jafm.68.228.24682
  32. [32] Kiran P., Bhadauria B.S., Nonlinear throughflow effects on thermally modulated porous medium, Ain Shams Eng J. 7(1), 473−482 (2016).10.1016/j.asej.2015.03.010
  33. [33] Homsy G.M., Sherwood A.E., Convective instabilities in porous media with through flow, AIChE J. 22, 168−174 (1976).10.1002/aic.690220121
  34. [34] Jones M.C., Persichetti J.M., Convective instability in packed beds with throughflow, AIChE J. 32, 1555−1557 (1986).10.1002/aic.690320916
  35. [35] Kaiser R., Miskolczy G., Some applications of ferrofluid magnetic colloids, IEEE Trans Magn. 6(3): 694−698 (1970).10.1109/TMAG.1970.1066834
  36. [36] Raj K., Chorney A.F., Ferrofluid technology ‒ an overview, Indian J Eng Mater Sci. 5(6): 372−389 (1998).
  37. [37] Scherer C., Figueiredo A.M., Ferrofluids: properties and applications, Braz J Phys. 35(3a): 718−727 (2005).10.1590/S0103-97332005000400018
  38. [38] Finlayson B.A., Convective instability of ferromagnetic fluids, J Fluid Mech. 40(4): 753−767(1970).10.1017/S0022112070000423
  39. [39] Gupta M.D., Gupta A.S., Convective instability of a layer of a ferromagnetic fluid rotating about a vertical axis. Int J Eng Sci. 17(3), 271−277 (1979).10.1016/0020-7225(79)90090-9
  40. [40] Stiles P.J., Kagan M., Thermo convective instability of a ferrofluid in a strong magnetic field, J Colloid Interf Sci. 134(2), 435−448 (1990).10.1016/0021-9797(90)90154-G
  41. [41] Vaidyanathan G., Sekar R., Ramanathan A., Effect of magnetic field dependent viscosity on ferro convection in rotating medium, Indian J Pure Appl Phys, 40(3), 159−165 (2002).
  42. [42] Suslov S.A., Thermo magnetic convection in a vertical layer of ferromagnetic fluid, Phys Fluids. 20(8), 084101 (2008).10.1063/1.2952596
  43. [43] Singh J. and Bajaj R., Temperature modulation in ferrofluid convection, Phys Fluids, 21(6), 064105(2009).10.1063/1.3153912
  44. [44] Sibanda P, Noreldin O.A.I., Thermo-convective instability in a rotating ferromagnetic fluid layer with temperature modulation, Open Phys. 16(1), 868−888 (2018).10.1515/phys-2018-0109
  45. [45] Melson A.C., Sekhar G.N., Siddheshwar P.G., Nonlinear analysis of effect of rigid body rotation on ferroconvection, J Heat Transfer., 142(6), 061802(2020).10.1115/1.4046533
  46. [46] NishaT., Maruthamanikandan S., Effect of gravity modulation ferroconvection in a densely packed porous layer, J of Applied Physics 3, 30−40(2018).10.9790/4861-0333040
  47. [47] Melson AC., Siddheshwar P.,Sekhar GN., Nonlinear analysis of the effect of viscoelasticity on ferroconvection, Heat Transfer, 50, 3861−3878(2021).10.1002/htj.22055
  48. [48] Manjula S.H., Kiran P., Thermo-Rheological Effect on Weak Nonlinear Rayleigh-Benard Convection under Rotation Speed Modulation, Book: Boundary Layer Flows, 01-20 (2022) doi: 10.5772/intechopen.10509710.5772/intechopen.105097
  49. [49] Kiran P., Gravitational modulation effect on double-diffusive oscillatory convection in a viscoelastic fluid Layer, Journal of Nanofluids, 11 (2), 263-275 (2022).10.1166/jon.2022.1827
  50. [50] Bhadauria B.S. and Kiran P., Weak non-linear oscillatory convection in a viscoelastic fluid layer under gravity modulation, Int J of Non-Linear Mechanics 65, 133-140 (2014).10.1016/j.ijnonlinmec.2014.05.002
Language: English
Page range: 7 - 24
Submitted on: Apr 15, 2022
Accepted on: Mar 15, 2022
Published on: Feb 10, 2023
Published by: Gheorghe Asachi Technical University of Iasi
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2023 Sivaraj Hajjiurge Manjula, Palle Kiran, published by Gheorghe Asachi Technical University of Iasi
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.