Have a personal or library account? Click to login
Research on Obtaining and Characterizing Ni - W Electroplating Alloys for Micro-Electro Mechanics Cover

References

  1. [1] Haj – Taieb M., Haseeb A.S.M.A., Caulfield J., Bade K., Aktaa J., Hemker K.J., Thermal stability of electrodeposited LIGA Ni-W alloys for high-temperature MEMS applications, Microsyst. Technol., 14(2008), 1531 – 1536;10.1007/s00542-007-0536-5
  2. [2] Jung H., Hong C., Ki J., Kim J., Kim B., Tak Y., Pulse electrodeposition of Ni-W alloy for trench filling in microelectromechanical systems, J. Nanosci. Nanotechnol., 8(2008), 5321 – 5325;10.1166/jnn.2008.1189
  3. [3] Wang H., Ding G.F., Zhao X.L., Yao J.Y., Zhu J., Wang Z.M., Fabrication of low stress Ni-W nanocristalline for MEMS devices, Shanghai JiaotongDaxueXuebao/J. Shanghai Jiaotong Univ. 41(2007), 12 – 15;
  4. [4] Wang H., Liu R., Cheng F.J., Cao Y., Ding G.F., Zhao X.L., Electrodepositing amorphous Ni-W alloys for MEMS, Microelectron. Eng., 87(2010), 1901 – 1906;10.1016/j.mee.2009.11.018
  5. [5] Armstrong D., Haseeb A., Wilkinson A., Roberts S., Micro-fracture testing of Ni-W microbeams produced by electrodeposition and FIB machining, MRS Proceedings, Cambridge Univ. Press, 2006 (pp. 0983-LL0908-0907);10.1557/PROC-983-0983-LL08-07
  6. [6] Younes O., Gileadi E., Electroplating of Ni /W Alloys (I): Ammoniacal citrate baths. J Electrochem Soc [Internet]. 2002; 149(2):C100; Available from: http://dx.doi.org/10.1149/1.1433750;
  7. [7] Younes O., Gileadi E., Younes O. Electroplating of High Tungsten Content Ni/W Alloys. Electrochem Solid-state Lett [Internet]. 1999; 3(12): 543; Available from: https://doi.org/10.1149/1.1391203;
  8. [8] Younes O., Zhu L., Rosenberg Y., Shacham-Diamand Y., Gileadi E. Electroplating of Amorphous Thin Films of Tungsten/Nickel Alloys. Langmuir [Internet]. 2001 Dec 1;17(26):8270–5; Available from: https://doi.org/10.1021/la010660x;
  9. [9] Yin K.-M., Lin B.-T., Effects of boric acid on the electrodeposition of iron, nickel and iron-nickel. Surf Coatings Technology. 1996; 78(1–3): 205–10;10.1016/0257-8972(94)02410-3
  10. [10] Schloßmacher P., Yamasaki T., Structural Analysis of Electroplated Amorphous-Nanocrystalline Ni-W. Microchim Acta [Internet]. 2000 Apr 1;132(2):309–13; Available from: https://doi.org/10.1007/s006040050074;
  11. [11] Namburi L., Electrodeposition of NiW alloys into deep recesses.pdf. 2001;
  12. [12] Yao S., Zhao S., Guo H., Kowaka M., New Amorphous Alloy Deposit with High Corrosion Resistance. Corossion. 1996; 52(03), 183;10.5006/1.3292112
  13. [13] Atanassov N, Gencheva K, Bratoeva M. Properties of nickel-tungsten alloys electrodeposited from sulfamate electrolyte. Plating and surface finishing, 1997; 84(2): 67–74;
  14. [14] Metikos – Hukovic M., Grubac Z., Radic N., Tonejc A., Sputter deposited Nanocrystalline Ni and Ni-W films as catalysts for hydrogen evolution, J. Mol. Catal. A Chem., 249 (2006), 172 – 180;10.1016/j.molcata.2006.01.020
  15. [15] Kawashima A., Akiyama E., Habazaki H., Hashimoto K., Caracterization of sputter-deposited Ni-Mo and Ni-W alloy electrocatalysts for hydrogen evolution in alkaline solution, Mater. Sci. Eng. A 226 (1997), 905 – 909;10.1016/S0921-5093(97)80095-0
  16. [16] Tasic G.S., Lacnjevac U., Tasic M.M., Kaninski M.M., Nikolic V.M., Zugic D.L., Jovic V.D., Influence of electrodeposition parameters of Ni-W on Ni cathode for alkaline water electrolyser, Int. J. Hydrog. Energy 38 (2013), 4291 – 4297;10.1016/j.ijhydene.2013.01.193
  17. [17] Gonzalez – Buch C., Herraiz-Cardona I., Ortega E.M., Garcia – Anton J., Perez-Herranz, Development of Ni-Mo, Ni-W and Ni-Co macroporous materials for hydrogen evolution reaction, Chem. Eng. Trans., (2013), 865 – 870;
  18. [18] Sizova I., Kulikov A., Onishchenko M., Serdyukov S., Maksimov A., Synthesis of nickel-tungsten sulfidehydrodearomatization catalysts by the decomposition of oil-soluble precursors, Pet. Chem, 56 (2016), 44 – 50;10.1134/S0965544115080174
  19. [19] Quiroga Arganaraz M.P., Ribotta S.B., Folquer M.E., Benitez G., Rubert A., Gassa L.M., Vela M.E., Salvarezza R.C., The electrochemistry of nanostructured Ni-W alloys, J. Solid State Electrochem. 17 (2013), 307 – 313;10.1007/s10008-012-1965-3
  20. [20] Rashkov R., Atanassov N., Jannakoudakis A., Jannakoudakis P., Theodoridou E., Structure and electrocatalytic activity of Ni-W thin films deposited on carbon fiber supports, J. Electrochem. Soc., 153 (2006), C152 – C156;10.1149/1.2163812
  21. [21] Elias I., Hegde A.C., Electrodeposition and electrocatalytic study of Ni-W alloy coating, Mater. Sci. Forum, Trans Tech Publ 2015, pp.651 – 654;10.4028/www.scientific.net/MSF.830-831.651
  22. [22] Fan C., Piron D., Sleb A, Paradis P., Study of electrodeposited nickel-molybdenum, nickel-tungsten, cobalt-molybdenum and cobalt-tungsten as hydrogen electrodes in alkaline water electrolysis, J. Electrochem. Soc., (1994), 382 – 387;10.1149/1.2054736
  23. [23] Maksic A.D., Miulovic S.M., Nikolic V.M., Perovic I.M., Kaninski M.P.M., Energy consumption of the electrolytic hydrogen production using Ni-W based activators – Part I, Appl. Catal. A Gen., 405 (2011), 25 – 28;10.1016/j.apcata.2011.07.017
  24. [24] Hong S.H., Ahn S.H., Choi J., Kim H.Y., Kim H.-J., Jang J.H., Kim H., Kim S.-K., High-activity electrodeposited NiW catalysts for hydrogrn evolution in alkaline water electrolysis, Appl. Surf. Sci. (2015);10.1016/j.apsusc.2015.05.040
  25. [25] Kaninski M.P.M., Saponjic D.P., Perovic I.M., Maksic A.D., Nikolic V.M., Electrochemical characterization of the Ni-W catalyst formed in situ during alkaline electrolityc hydrogen production – Part II, Appl. Catal. A Gen., 405 (2011), 29 – 35;10.1016/j.apcata.2011.07.015
  26. [26] Guo Z, Zhu X, Zhai D, Yang X. Electrodeposition of Ni-W amorphous alloy and Ni-W-SiC composite deposits, 材 料科学技术 (英文版), 2000;
  27. [27] Poroch – Serițan M., Cercetăriprivindcontrolulîntimp real, prinspectroscopie, al băilorgalvanice de nichelare, (PhD Thesis) Suceava, 2010;
  28. [28] Poroch – Serițan M., Gutt G., Severin T., Bobu M., Influence of pH galvanic baths on the nickel deposits. Annals of Dunărea de Jos University of Galați, Fascicle IX Metallurgy and Materials Science, 2009; 2: 315 – 320;
  29. [29] Dias A., Ciminelli V.N.S., Thermodynamic calculation and modeling of the hydrothermal synthesisi of nickel tungstates, J. Eur. Ceram. Soc. 21 (2001), 2061 – 2065;10.1016/S0955-2219(01)00172-8
  30. [30] Sen A., Pramanik P., A chemical syntetic route for the preparation of fine-grained metal tungstate powders (M = Ca, Co, Ni, Cu, Zn), J. Eur. Ceram. Soc. 21 (2001), 745-750;10.1016/S0955-2219(00)00265-X
  31. [31] Amadeh A., Harsijsani M., Moradi H., Wear behavior of carbon steel electrodeposited by nanocrystalline Ni-W coatings, Int. J. ISSI 6 (2009), 14 – 19;
  32. [32] Obradovic M.D., Bosnjakov G.Z, Stevanovic R.M., Maksimovic M.D., Despic A.R., Pulse and direct current plating of Ni-W alloys from ammonia-citrate electrolyte, Sulf. Coat. Technol., 200 (2006), 4201 – 4207;10.1016/j.surfcoat.2004.12.013
  33. [33] Oue S., Nakano H., Kobayashi S., Fukushima H., Structure and codepositionbehavior of Ni-W alloys electrodeposited from ammoniacal citrate solutions, J. Electrochem Soc. 156 (2009) D17-D22;10.1149/1.3006389
  34. [34] Zemanova M., Kurinec R., Jorik V., Kadleciova M., Ni-W alloy coating deposited from a citrate electrolyte, Chem. Pap. 66 (2012), 492 – 501;10.2478/s11696-011-0116-0
  35. [35] Wang Y., Zhou Q., Li K., Zhong Q., Bui Q.B., Preparation of Ni-W-SiO2 nanocomposite coating and evaluation of its hardness and corrosion resistance, Ceram. Int. 41 (2015), 79 – 84;10.1016/j.ceramint.2014.08.034
  36. [36] Bratoeva M., Atanasov N., Effect of sulfamate-citrate electrolyte pH on the Ni-W alloy electrodeposition, Russ. J. Electrochem. 36 (2000), 60 – 63;10.1007/BF02757797
  37. [37] Bera P., Kumar M.D., Anandan C., Shivakumara C., Characterization and microhardness of electrodeposited Ni-W coatings obtained from gluconate bath, Surf. Rev. Lett. (2014);10.1142/S0218625X15500110
  38. [38] Mizushima I., Tang P.T., Hasen H.N., Somers M.A.J., Development of a new electroplating process for Ni-W alloy deposits, Electrochim. Acta 51 (2005), 888 – 896;10.1016/j.electacta.2005.04.050
  39. [39] Mizushima I., Tang P.T., Hasen H.N., Somers M.A.J., Identification of an anomalous phase in Ni-W electrodeposits, Surf. Coat. Technol. 202 (2008) 3341 – 3345;10.1016/j.surfcoat.2007.12.016
  40. [40] Mizushima I., Electrodeposition of Ni-W Alloy and Characterization of Microstructure and Properties of the Deposits (PhD Thesis) 2006;
  41. [41] Brenner A., Electrodeposition of Alloys, Academic Press Inc., New York, 1963;10.1016/B978-1-4831-9807-1.50015-5
  42. [42] Holt M., Vaaler L., Electrolytic reduction of aqueus tungstate solutions, J. Electrochem. Soc. 94 (1948), 50 – 58;10.1149/1.2773824
  43. [43] Clark W.E., Lietzke M., The mechanism of the tungsten alloy plating process. J. Electrochem Soc. 99 (1952), 245 – 249;10.1149/1.2779712
  44. [44] Fukushima H., Akiyama T., Akagi S., Higashi K., Role of iron-group metals in the induced codeposition of molybdenum from aqueous solution, Trans. Jpn. Inst. Metals 20 (1979), 358 – 364;10.2320/matertrans1960.20.358
  45. [45] Podlaha E., Landolt D., Induced codeposition II. A mathematical model describing the electrodeposition of Ni-Mo alloys, J. Electrochem. Soc. 143 (1996), 893 – 899;10.1149/1.1836554
  46. [46] Podlaha E., Landolt D., Induced codeposition III. Molybdenum alloys with nickel, cobalt and iron, J. Electrochem. Soc. 144 (1997), 1672 – 1680;10.1149/1.1837658
  47. [47] Niu Z.-J., Yao S.-B., Zhou S.-M., In situ surface Raman investigation on induced codeposition of an Fei-Mo alloy, J. Electroanal. Chem. 455 (1998), 205 - 207;10.1016/S0022-0728(98)00148-X
  48. [48] Zeng Y., Li Z., Ma M., Zhou S., In situ surface Raman study of the induced codeposition mechanism of Ni-Mo alloys, Electrochem. Commun. 2 (2000), 36 – 38;10.1016/S1388-2481(99)00137-X
  49. [49] Obradovic M., Stevanovic R., Despic A., Electrochemical deposition of Ni-W alloys from ammonia-citrate electrolyte, J. Electroanal. Chem. 552 (2003), 185 – 196;10.1016/S0022-0728(03)00151-7
  50. [50] Kabi S., Raeissi K., Saatchi A., Effect of polarization type on properties of Ni-W nanocrystalline electrodeposits, J. Apple. Electrochem. 39 (2009), 1279 – 1285;10.1007/s10800-009-9796-3
  51. [51] Eliaz N., Gileadi E., The mechanism of induced codeposition of Ni-W alloys, ECS Trans., (2007), 337 – 349;10.1149/1.2408887
  52. [52] Eliaz N., Gileadi E., Induced codeposition of alloys of tungsten, molybdenum nd rhenium with transition metals, Modern Aspects of Electrochemistry, Springer 2008, pp. 191 – 301;10.1007/978-0-387-49489-0_4
  53. [[53] Ibrahim M.A.M., Rehim S.S.A.E., Wahaab S.M. A.E., Dankeria M.M., Nickel Electroplating On Steel From Acidic Citrate Baths. Plat Surf Finish. 1999 aprilie. 69-74, https://www.nmfrc.org/pdf/p0499i.pdf;
  54. [54] Moussa S., Ibrahim M., Rehim S.A.E., Induced electrodeposition of tungsten with nickel from acidic citrate electrolyte. Journal of applied electrochemistry. 2006; 36(3): 333–8;10.1007/s10800-005-9069-8
  55. [55] Yamasaki T, High-strength nanocrystalline Ni-W alloys produced by electrodeposition and their embrittlement behaviors during grain growth. Scripta Materialia. 2001 May; 44(8–9):1497; DOI:10.1016/S1359-6462(01)00720-5;
  56. [56] Nasu T., Sakurai M., Kamiyama T., Usuki T., Uemura O., Yamasaki T. EXAFS study on amorphous and nanocrystalline M–W (M = Fe; Ni) alloys produced by electrodeposition Journal of Non-Crystalline Solids. 2002; 312-314; 319–322;10.1016/S0022-3093(02)01702-7
  57. [57] Omi T., Glass H., Yamamoto H., Phase Structure and Composition of Fe-W Alloy Electrodeposits. Journal of the Electrochemical Society. 1976; 123(3):341.10.1149/1.2132822
Language: English
Page range: 21 - 34
Submitted on: Jan 20, 2022
Accepted on: Mar 15, 2022
Published on: Oct 20, 2022
Published by: Gheorghe Asachi Technical University of Iasi
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2022 Maria Poroch-Seriţan, Igor Creţescu, Gheorghe Gutt, Marius Prelipceanu, Radu Fechet, Dragoş Vicoveanu, Otilia-Sanda Prelipceanu, Andrei Poroch-Seriţan, published by Gheorghe Asachi Technical University of Iasi
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.