References
- Agop M., Păun V.P., On the New Perspectives of Fractal Theory, in Fundaments and Applications, Bucharest, Romanian Academy Publishing House (2017).
- Barbilian D., Apolare und Überapolare Simplexe, Mathematica 11, 1-24 (1935).
- Cariglia M., Hidden Symmetries in Classical and Quantum Physics, arXiv:1411.1262 (2014).10.1103/RevModPhys.86.1283
- Crampin M., Cartan Geometries and their Symmetries, Paris, Atlantis Press (2016).10.2991/978-94-6239-192-5
- Darling R.W.R., Differential Forms and Connections, Cambridge, Cambridge University Press (1994).10.1017/CBO9780511805110
- Frolov V.P., Hidden Symmetries of Higher-Dimensional Black Hole Spacetimes, Prog. Theor. Phys. (Suppl.) 172, 210-219 (2008).10.1143/PTPS.172.210
- Fresnel A., Mémoire sur la Double Réfraction, Mémoirs de l’Académie des Sciences de l’Institute de France 7, 45-176 (1827).
- Jackson E.A., Perspectives of Nonlinear Dynamics, New York, Cambridge University Press (1992).
- Krtouš P., Frolov V.P., Kubizňák, D., Hidden Symmetries of Higher-Dimensional Black Holes and Uniqueness of the Kerr-NUT-(A) dS Spacetime, Phys. Rev. D 78, 064022 (2008).10.1103/PhysRevD.78.064022
- Lang S., SL2(R), New York, Springer Verlag (2011).
- Lechner K., Classical Electrodynamics. A Modern Perspective, Basel, Springer International Publishing AG (2018).10.1007/978-3-319-91809-9
- Mazilu N., Agop M., Skyrmions, in A Great Finishing Touch to Classical Newtonian Philosophy, New York, Nova Science Publishers Company (2012).
- Mazilu N., Agop M., Mercheş I., Scale Transitions as Foundations of Physics, Singapore, World Scientific (2021).10.1142/12151
- Mercheş I., Agop M., Differentiability and Fractality in Dynamics of Physical Systems, New Jersey, World Scientific (2016).10.1142/9606
- Nagle R., Saff E., Snider A., Fundamentals of Differential Equations, 9th ed., London, Pearson (2018).
- Novojilov V.V., On the Physical Meaning of the Tensions Invariants used in Plasticity Theory (in Russian), Prikladnaya Matematika i Mekhanika 16, 617-619 (1952).