Have a personal or library account? Click to login
A “Hidden” Symmetry and Some of Its Implications Cover

References

  1. Agop M., Păun V.P., On the New Perspectives of Fractal Theory, in Fundaments and Applications, Bucharest, Romanian Academy Publishing House (2017).
  2. Barbilian D., Apolare und Überapolare Simplexe, Mathematica 11, 1-24 (1935).
  3. Cariglia M., Hidden Symmetries in Classical and Quantum Physics, arXiv:1411.1262 (2014).10.1103/RevModPhys.86.1283
  4. Crampin M., Cartan Geometries and their Symmetries, Paris, Atlantis Press (2016).10.2991/978-94-6239-192-5
  5. Darling R.W.R., Differential Forms and Connections, Cambridge, Cambridge University Press (1994).10.1017/CBO9780511805110
  6. Frolov V.P., Hidden Symmetries of Higher-Dimensional Black Hole Spacetimes, Prog. Theor. Phys. (Suppl.) 172, 210-219 (2008).10.1143/PTPS.172.210
  7. Fresnel A., Mémoire sur la Double Réfraction, Mémoirs de l’Académie des Sciences de l’Institute de France 7, 45-176 (1827).
  8. Jackson E.A., Perspectives of Nonlinear Dynamics, New York, Cambridge University Press (1992).
  9. Krtouš P., Frolov V.P., Kubizňák, D., Hidden Symmetries of Higher-Dimensional Black Holes and Uniqueness of the Kerr-NUT-(A) dS Spacetime, Phys. Rev. D 78, 064022 (2008).10.1103/PhysRevD.78.064022
  10. Lang S., SL2(R), New York, Springer Verlag (2011).
  11. Lechner K., Classical Electrodynamics. A Modern Perspective, Basel, Springer International Publishing AG (2018).10.1007/978-3-319-91809-9
  12. Mazilu N., Agop M., Skyrmions, in A Great Finishing Touch to Classical Newtonian Philosophy, New York, Nova Science Publishers Company (2012).
  13. Mazilu N., Agop M., Mercheş I., Scale Transitions as Foundations of Physics, Singapore, World Scientific (2021).10.1142/12151
  14. Mercheş I., Agop M., Differentiability and Fractality in Dynamics of Physical Systems, New Jersey, World Scientific (2016).10.1142/9606
  15. Nagle R., Saff E., Snider A., Fundamentals of Differential Equations, 9th ed., London, Pearson (2018).
  16. Novojilov V.V., On the Physical Meaning of the Tensions Invariants used in Plasticity Theory (in Russian), Prikladnaya Matematika i Mekhanika 16, 617-619 (1952).
Language: English
Page range: 55 - 65
Submitted on: Aug 9, 2021
Accepted on: Sep 14, 2021
Published on: Mar 17, 2022
Published by: Gheorghe Asachi Technical University of Iasi
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2022 Vlad Ghizdovăţ, Mihai Marius Guţu, Iuliana Oprea, Cipriana Ştefănescu, published by Gheorghe Asachi Technical University of Iasi
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.