References
- Chlouverakis K.E., Sprott J.C., Chaos Solitons & Fractals 28, 739-746, Chaotic Hyperjerk Systems, http://sprott.physics.wisc.edu/pubs/paper297.htm (2005).10.1016/j.chaos.2005.08.019
- Coddington E.A., Levinson N., Theory of Ordinary Differential Equations, Tata McGraw-Hill Education (1955).
- Eichhorn R., Linz S.J., Hänggi P., Transformations of Nonlinear Dynamical Systems to Jerky Motion and its Application to Minimal Chaotic Flows, Physical Review E, 58, 6, 7151 (1998).10.1103/PhysRevE.58.7151
- Fu Z., Heidel J., Non-Chaotic Behaviour in Three-Dimensional Quadratic Systems, Nonlinearity, 10, 5, 1289 (1997).10.1088/0951-7715/10/5/014
- Grassberger P., Procaccia I., Measuring the Strangeness of Strange Attractors. In the Theory of Chaotic Attractors, Springer, New York, NY, 170-189 (2004).10.1007/978-0-387-21830-4_12
- Lorenz E.N., Haman K., The Essence of Chaos, Pure and Applied Geophysics, 147, 3, 598-599 (1996).
- Rössler O.E., An Equation for Continuous Chaos, Physics Letters A, 57, 5, 397-398 (1976).10.1016/0375-9601(76)90101-8
- Rössler O.E., Continuous Chaos - Four Prototype Equations, Annals of the New York Academy of Sciences, 316, 1, 376-392 (1979).10.1111/j.1749-6632.1979.tb29482.x
- Sprott J.C., Elegant Chaos: Algebraically Simple Chaotic Flows, World Scientific (2010).10.1142/7183
- Tabor M., Chaos and Integrability in Nonlinear Dynamics: An Introduction, Wiley Interscience (1989).
- van der Schrier G., Maas L.R., The Diffusionless Lorenz Equations; Shil’nikov Bifurcations and Reduction to an Explicit Map, Physica D: Nonlinear Phenomena, 141, 1-2, 19-36 (2000).10.1016/S0167-2789(00)00033-6