Have a personal or library account? Click to login
On the Holographic Type Dynamics in Complexity Economics Cover

References

  1. Agop M., Mercheş I., Operational Procedures Describing Physical Systems, CRC Press (2018).10.1201/9780429399589
  2. Agop M., Păun V.P., On the New Perspectives of Fractal Theory. Fundaments and Applications, Romanian Academy Publishing House, Bucharest (2017).
  3. Arthur W.B., Complexity Economics: A Different Framework for Economic Thought (2013).
  4. Bar-Yam Y., Dynamics of Complex System, Reading, Mass: Perseus Books (1999).
  5. Battiston S., Farmer J.D., Flache A., Garlaschelli D., Haldane A.G., Heesterbeek H., Hommes C., Jaeger C., May R., Scheffer M., Complexity Theory and Financial Regulation. Science, 351(6275), 818-819 (2016).10.1126/science.aad029926912882
  6. Cartan E., Riemannian Geometry in an Orthogonal Frame, World Scientific Publishing, Singapore (2001).10.1142/4808
  7. Cartan E., La Théorie des Groupes Finis et Continus et la Géométrie Différentielle Traitées par la Méthode du Repère Mobile, Gauthier-Villars, Paris (1951).
  8. Cristescu C.P., Nonlinear Dynamics and Chaos. Theoretical Fundaments and Applications, Romanian Academy Publishing House (2008).
  9. De Alfaro V., Fubini S., Furlan G., Conformal Invariance in Quantum Mechanics, Il Nuovo Cimento A, 34, 569-611, 1976.10.1007/BF02785666
  10. Deffner S., Campbell S., Quantum Thermodynamics: An Introduction to the Thermodynamics of Quantum Information, IOP Concise Physics (2019).10.1088/2053-2571/ab21c6ch3
  11. Gavriluţ A., Mercheş I., Agop M., Atomicity Through Fractal Measure Theory: Mathematical and Physical Fundamentals with Application, Springer, 1st Edition (2019).
  12. Gemmer J., Michel M., Mahler G., Quantum Thermodynamics, Springer, 2004.10.1007/b98082
  13. Jackson E.A., Perspectives of Nonlinear Dynamics, 1, Cambridge University Press, New York, 1992.
  14. Mandelbrot B.B., The Fractal Geometry of Nature, W.H. Freeman and Co., San Fracisco (1982).
  15. Mantegna R.N., Stanley H.E., An Introduction to Econophysics: Correlations and Complexity in Finance, Cambridge, UK: Cambridge University Press (2016).
  16. Mazilu N., Agop M., Skyrmions. A Great Finishing Touch to Classical Newtonian Philosophy, New York, Ny Nova Science Publishers C. (2012).
  17. Mazilu N., Agop M., Mercheş I., The Mathematical Principles of Scale Relativity Physics: The Concept of Interpretation, CRC Press (2019).10.1201/9780429329050
  18. Mercheş I., Agop M., Differentiability and Fractality in Dynamics of Physical Systems, World Scientific, New Jersey (2016).10.1142/9606
  19. Mitchell M., Complexity. A Guided Tour, New York: Oxford, Oxford University Press (2011).
  20. Niederer P., The Maximal Kinematical Invariance Group of the Free Schrodinger Equation, Helvetica Physica Acta, 45, 802-810, 1972.
  21. Nottale L., Scale Relativity and Fractal Space-Time: A New Approach to Unifying Relativity and Quantum Mechanics, Imperial College Press, London (2011).
  22. Politi A., Badii R., Complexity: Hierarchical Structures and Scaling in Physics Cambridge: Cambridge University Press (2003).
  23. Postnikov M.M., Leçons de géométrie: groupes et algèbres de Lie. Mir, Moscow. (1985).
  24. Simon B., Representations of Finite and Compact Groups, Providence, Ri American Math. Soc. C, 2008.
Language: English
Page range: 69 - 81
Submitted on: May 7, 2021
Accepted on: Jun 14, 2021
Published on: Mar 3, 2022
Published by: Gheorghe Asachi Technical University of Iasi
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2022 Ștefana Agop, Gavril Ștefan, Tudor-Cristian Petrescu, Alexandra Saviuc, Cristina-Marcela Rusu, published by Gheorghe Asachi Technical University of Iasi
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.