Have a personal or library account? Click to login
A New Theoretical Model for Evaluating Atrial Fibrillations Cover

References

  1. Aflori M., Dimitriu D.G., Signal Analysis Using Nonlinear Dynamics Methods (in Romanian), in: Dumitrascu L., Dumitrascu I., Dorohoi D.O., Dimitriu D.G., Apreotesei G., Aflori M. (Eds.), Physics Complements for PhD Candidates (in Romanian), I, Iaşi, Tehnopress (2006).
  2. Agop M., Ioannou P., Nica P., Radu C., Alexandru A., Vizureanu P., Fractal Characteristics of the Solidification Process, Materials Transactions, 45, 972-975 (2004).
  3. Agop M., Murgulet C., El Naschie’s Epsilon((Infinity)) Space-Time and Scale Relativity Theory in the Topological Dimension D=4, Chaos Solitons & Fractals, 32, 1231-1240 (2007).
  4. Agop M., Paun V., Harabagiu A., El Naschie’s Epsilon((Infinity)) Theory and Effect of Nanoparticle Clustering on the Heat Transport in Nanofluids, Chaos Solitons & Fractals, 37, 1269-1278 (2008).
  5. Arce G.R., Nonlinear Signal Processing: A Statistical Approach, Hoboken, Wiley (2004).
  6. Badescu M., Ciocoiu M., Mocanu V., Practical Physiopathology Notions (in Romanian), Iaşi, Gr. T. Popa Publishing House (2016).
  7. Camm A.J., Lüscher T.F., Serruys P.W., Eds., The ESC Textbook of Cardiovascular Medicine, 2nd Ed., Oxford, Oxford University Press (2009).10.1093/med/9780199566990.001.0001
  8. Christini D.J., Collins J.J., Hall K., Glass L., Controlling Cardiac Arrhythmias: The Relevance of Nonlinear Dynamics, in Moss F., Gielen S. (Eds.), Handbook of Biological Physics, 4, Amsterdam, Elsevier, 205-227 (2001).
  9. Colotin M., Pompilian G.O., Nica P., Gurlui S., Paun V., Agop M., Fractal Transport Phenomena through the Scale Relativity Model, Acta Physica Polonica A, 116, 157-164 (2009).
  10. Eckmann J.P., Kamphorst S.O., Ruelle D., Recurrence Plots of Dynamical Systems, Europhysics Letters, 4, 973-977 (1987).
  11. Guevara M.R., Glass L., Shrier A., Phase Locking, Period-Doubling Bifurcations, and Irregular Dynamics in Periodically Stimulated Cardiac Cells, Science, 214, 1350-1353 (1981).
  12. Haulica I., Human Physiology, Bucharest, Medical Publishing House (2007).
  13. Iaizzo P.A. (Ed.) Handbook of Cardiac Anatomy, Physiology, and Devices, 3rd Ed., New York, Springer (2015).10.1007/978-3-319-19464-6_1
  14. Luther S., Fenton F.H., Kornreich B.G., Squires A., Bittihn P., Hornung D., Zabel M., Flanders J., Gladuli A., Campoy L., Cherry E.M., Luther G., Hasenfuss G., Krinsky V.I., Pumir A., Gilmour Jr. R.F., Bodenschatz E., Low-Energy Control of Electrical Turbulence in the Heart, Nature, 475, 235-239 (2011).
  15. Mané R., On the Dimension of Compact Invariant Sets of Certain Nonlinear Maps, Lecture Notes in Mathematics, 898, 230-242 (1981).10.1007/BFb0091916
  16. Nayak S.K., Bit A., Dey A., Mohapatra B., Pal K., A Review of the Nonlinear Dynamical System Analysis of Electrocardiogram Signal, Journal of Healthcare Engineering 2018, 1-19 (2018).
  17. Nayfeh A.H., Balachandran B., Applied Nonlinear Dynamics. Analytical, Computational, and Experimental Methods, Weinheim, Wiley-VCH (2004).
  18. Noble D., A Modification of the Hodgkin-Huxley Equations Applicable to Purkinje Fibre Action and Pace-Maker Potentials, Journal of Physiology, 160, 317-352 (1960).10.1113/jphysiol.1962.sp006849135953514480151
  19. Packard N.H., Crutchfield J.P., Farmer J.D., Shaw R.S., Geometry from a Time Series, Physical Review Letters, 45, 712-716 (1980).10.1103/PhysRevLett.45.712
  20. Perc M., Nonlinear Time Series Analysis of the Human Electrocardiogram, European Journal of Physics, 26, 757-768 (2005).10.1088/0143-0807/26/5/008
  21. Ritzenberg A.L., Adam D.R., Cohen R.J., Period Multiplying-Evidence for Nonlinear Behaviour of the Canine Heart, Nature, 307, 159-161 (1984).
  22. Ruelle D., Chaotic Evolution and Strange Attractors, Cambridge, Cambridge University Press (1989).10.1017/CBO9780511608773
  23. Stoler D., Equivalence Classes of Minimum Uncertainty Packets, Phys. Rev. D 1, 3217-3219 (1970).
  24. Stoler D., Generalized Coherence States, Phys. Rev. D 4, 2309 (1971).10.1103/PhysRevD.4.2309
  25. Su Z.-Y., Wu T., Yang P.-H., Wang Y.-T., Dynamic Analysis of Heartbeat Rate Signals of Epileptics Using Multidimensional Phase Space Reconstruction Approach, Physica A, 387, 2293-2305 (2008).
  26. Takens F., Detecting Strange Attractors in Turbulence, Lecture Notes in Mathematics, 898, 366-381 (1981).10.1007/BFb0091924
  27. Vagos M.R.S.S., van Herck I.G.M., Sundnes J., Arevalo H.J., Edwards A.G., Koivumäki J.T., Computational Modeling of Electrophysiology and Pharmacotherapy of Atrial Fibrillation: Recent Advances and Future Challenges, Frontiers in Physiology, 9, 1-29 (2018).
  28. Young H., Benton D., We Should be Using Nonlinear Indices when Relating Heart-Rate Dynamics to Cognition and Mood, Scientific Reports, 5, 1-16 (2015). https://physionet.org/physiobank/database/chbmit/.
Language: English
Page range: 9 - 20
Submitted on: Feb 4, 2021
Accepted on: Mar 29, 2021
Published on: Feb 18, 2022
Published by: Gheorghe Asachi Technical University of Iasi
In partnership with: Paradigm Publishing Services
Publication frequency: Volume open

© 2022 Teodor-Marian Ionescu, Vlad Ghizdovăţ, Irena-Cristina Grierosu, Decebal Vasincu, Cipriana Ştefănescu, published by Gheorghe Asachi Technical University of Iasi
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.