References
- Anamika S., Sambit Sahu S., MPPT Control of Standalone-PV System with Battery as an Energy Storage Element, MTech thesis, 2015.
- Dwivedi P., Sudhakar K., Soni A., Solomin E., Kirpichnikova I., Advanced cooling techniques of P.V. modules: A state of art, Case Studies in Thermal Engineering, Volume 21, 2020, 100674, ISSN 2214-157X, https://doi.org/10.1016/j.csite.2020.100674.
- Ersuel A., Scheurer A., Hidalgo J.S., Kobosko S., Shaffer A., Photovoltaic MPPT Charge Controller, Mentor Alan Shaffer Lakeland Electric, Sponsored by Workforce Central Florida, Spring, 2012.
- Finan B.G., Maximum Power Point Tracking for Solar Power Applications with Partial Shading, 2013.
- Huang J.SH., Shi J.H., Yi Y., Xu H.X., Hui Y.Y., Liu J.F. et al., Digital twin synchronization method and system implementation for micro-assembly unit, Computer Integrated Manufacturing Systems China, vol. 27, no. 2, pp. 412-422, Feb 2021.
- Hullon M.S., Comparison Between Perturb and Observe and Incremental Conductance Algorithms for Photovoltaic Systems using Buck Converter, 2019.
- Lei Z., Zhou H., Dai X. et al., Digital twin based monitoring and control for DC-DC converters, Nat Commun 14, 5604 (2023), https://doi.org/10.1038/s41467-023-41248-z.
- Petrovic I., Simic Z., Vrazic M., Advanced PV Plant Planning based on Measured Energy Production Results - Approach and Measured Data Processing, Advances in Electrical and Computer Engineering, vol.14, no.1, pp.49-54, 2014, doi:10.4316/AECE.2014.01008.
- Xiong T., Luo M., Yang C., Cheng Q., Liu Y., MMC Online Thermal Simulation and Life Prediction based on Digital Twin Technology, 2022 IEEE International Conferences on Internet of Things (iThings), Espoo, Finland, 2022, pp. 631-635, doi:10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics55523.2022.00035.
- Yonce J., Walters M., Venayagamoorthy G.K., Short-Term Prediction of Solar Photovoltaic Power Generation Using a Digital Twin, 2023 North American Power Symposium (NAPS), Asheville, NC, USA, 2023, pp. 1-6, doi:10.1109/NAPS58826.2023.10318632.
- Zhang W., Chen X., He K., Chen L., Xu L., Wang X., Yang S., Semi-asynchronous personalized federated learning for short-term photovoltaic power forecasting, Digital Communications and Networks, Volume 9, Issue 5, 2023, Pages 1221-1229, ISSN 2352-8648, https://doi.org/10.1016/j.dcan.2022.03.022.