References
- Adu-Kankam K.O., Camarinha-Matos L.M., Modeling Collaborative Behaviors in Energy Ecosystems (2023).
- Anders G., Schiendorfer A., Siefert F., Steghöfer J.P., Reif W., Cooperative resource allocation in open systems of systems, ACM Transactions on Autonomous and Adaptive Systems (TAAS), 10(2), 1-44 (2015).
- Belbachir A., El Fallah-Seghrouchni A., Casals A., Pasin M., Smart Mobility Using Multi-Agent System (2019).
- Chiou E.K., Lee J.D., Cooperation in human-agent systems to support resilience: A microworld experiment, Human factors, 58(6), 846-863 (2016).
- Dannenhauer D., Floyd M.W., Magazzeni D., Aha D.W., Explaining Rebel Behavior in Goal Reasoning Agents (2018).
- De La Iglesia D.G., Calderón J.F., Weyns D., Milrad M., Nussbaum M., A self-adaptive multi-agent system approach for collaborative mobile learning, IEEE Transactions on Learning Technologies, 8(2), 158-172 (2014).
- Ding Z., Huang T., Lu Z., Learning individually inferred communication for multi-agent cooperation, Advances in neural information processing systems, 33, 22069-22079 (2020).
- Dorri A., Kanhere S.S., Jurdak R., Multi-Agent Systems: A survey, In: IEEE Access 6 (Apr. 2018), pp. 1–1, DOI: 10.1109/ACCESS.2018.2831228.
- Ferber J., Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence, 1st. USA: Addison-Wesley Longman Publishing Co., Inc., 1999. ISBN: 0201360489.
- Goncalo J.A., Staw B.M., Individualism–collectivism and group creativity. Organizational behavior and human decision processes, 100(1), 96-109 (2006).
- Kaur A., Kumar K., Energy-efficient resource allocation in cognitive radio networks under cooperative multi-agent model-free reinforcement learning schemes, IEEE Transactions on Network and Service Management, 17(3), 1337-1348 (2020).
- King D.W., Peterson G.L., The Emergence of Division of Labor in Multi-Agent Systems, 2019 IEEE 13th International Conference on Self-Adaptive and Self-Organizing Systems (SASO), Umea, Sweden, 2019, pp. 107-116, doi: 10.1109/SASO.2019.00022.
- Kleiman-Weiner M., Ho M.K., Austerweil J.L., Littman M.L., Tenenbaum J.B., Coordinate to cooperate or compete: Abstract goals and joint intentions in social interaction, In CogSci. (2016, January).
- La H.M., Lim R., Sheng W., Multirobot cooperative learning for predator avoidance, IEEE Transactions on Control Systems Technology, 23(1), 52-63 (2014).
- Le Gléau T., Marjou X., Lemlouma T., Radier B., Game theory approach in multi-agent resources sharing, In 2020 IEEE Symposium on Computers and Communications (ISCC), pp. 1-6, IEEE (2020, July).
- Luo F., Dong Z.Y., Liang G., Murata J., Xu Z., A distributed electricity trading system in active distribution networks based on multi-agent coalition and blockchain, IEEE Transactions on Power Systems, 34(5), 4097-4108 (2018).
- Malik S., Khan M.A., El-Sayed H., Collaborative Autonomous Driving‒A Survey of Solution Approaches and Future Challenges, Sensors 2021, 21, 3783, https://doi.org/10.3390/s21113783.
- Ossowski S., Coordination in Multi-Agent Systems: Towards a Technology of Agreement. In: Bergmann R., Lindemann G., Kirn S., Pěchouček M. (eds) Multiagent System Technologies. MATES 2008. Lecture Notes in Computer Science (), vol 5244, Springer, Berlin, Heidelberg (2008), https://doi.org/10.1007/978-3-540-87805-6_2.
- Phan T., Gabor T., Sedlmeier A., Ritz F., Kempter B., Klein C., Sauer H., Schmid R., Wieghardt J., Zeller M., Linnhoff-Popien C., Learning and testing resilience in cooperative multi-agent systems. In Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems, pp. 1055-1063 (2020, May).
- Ramchurn S.D., Huynh D., Jennings N.R., Trust in multi-agent systems, The knowledge engineering review, 19(1), 1-25 (2004).
- Raveendran M., Puranam P., Warglien M., Division of Labor Through Self-Selection, Organization Science (2021).
- Roketskiy N., Competition and networks of collaboration, Theoretical Economics, 13(3), 1077-1110 (2018).
- Santos F., Pacheco J., Santos F., Social norms of cooperation with costly reputation building, In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32, No. 1 (2018, April).
- Siedler P.D., Dynamic Collaborative Multi-Agent Reinforcement Learning Communication for Autonomous Drone Reforestation (2022).
- Sioutis C., Tweedale J., Agent Cooperation and Collaboration, In: Gabrys B., Howlett R.J., Jain L.C. (eds), Knowledge-Based Intelligent Information and Engineering Systems. KES 2006, Lecture Notes in Computer Science (), Vol. 4252, Springer, Berlin, Heidelberg (2006), https://doi.org/10.1007/11893004_60.
- Skobelev P., Multi-agent systems for real-time adaptive resource management, In Industrial Agents (pp. 207-229), Morgan Kaufmann (2015).
- Syzdykbayev M., Hajari H., Karimi H.A., An Ontology for Collaborative Navigation Among Autonomous Cars, Drivers, and Pedestrians in Smart Cities, 2019 4th International Conference on Smart and Sustainable Technologies (SpliTech), Split, Croatia, 2019, pp. 1-6, doi: 10.23919/SpliTech.2019.8783045.
- Telgen D., Grid Manufacturing: A Cyber-Physical Approach with Autonomous Products and Reconfigurable Manufacturing Machines (2017).
- Vecliuc D-D., Leon F., Bădică C., The Effect of Collaborative Behaviors in Emergency Evacuation (2022).
- Voulgaris P.G., Elia N., When Selfish is Socially Optimal, In IEEE Transactions on Automatic Control, vol. 67, no. 5, pp. 2359-2372, May 2022, doi: 10.1109/TAC.2021.3081795.
- Voulgaris P.G., Elia N., Social optimization problems with decentralized and selfish optimal strategies, In 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pp. 4721-4726, IEEE, (2017, December).
- Wang J., Hong Y., Wang J., Xu J., Tang Y., Han Qing-Long, Kurths J., Cooperative and Competitive Multi-Agent Systems: From Optimization to Games (2022).
- Wang J., Hong Y., Wang J., Xu J., Tang Y., Han Q.L., Kurths J., Cooperative and competitive multi-agent systems: From optimization to games, IEEE/CAA Journal of Automatica Sinica, 9(5), 763-783 (2022).
- Wang J., Chen K., Lewis F.L., Coordination of multi-agent systems on interacting physical and communication topologies, Syst. Control. Lett., 100, 56-65 (2017).
- Wen G., Duan Z., Yu W., Chen G., Consensus in Multi-agent Systems with Communication Constraints, International Journal of Robust and Nonlinear Control. 22, 170-182, 10.1002/rnc.1687 (2012).
- Wooldridge M., An Introduction to Multiagent Systems, 2nd ed. Chichester, UK: Wiley, 2009, ISBN: 978-0-470-51946-2.
- Wray K., Kumar A., Zilberstein S., Integrated cooperation and competition in multi-agent decision-making, In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32, No. 1 (2018, April).
- Yang D., Weili Y., Sen L., Felix T.S. Chan, Understanding the Effect of Multi-Agent Collaboration on the Performance of Logistic Park Projects: Evidence from China (2022).
- Yang Y. et al., Multiagent Collaboration for Emergency Evacuation Using Reinforcement Learning for Transportation Systems, in IEEE Journal on Miniaturization for Air and Space Systems, vol. 3, no. 4, pp. 232-241, Dec. 2022, doi: 10.1109/JMASS.2022.3210531.
- Yu C., Zhang M., Ren F., Luo X., Emergence of social norms through collective learning in networked agent societies, In Proceedings of the 2013 international conference on Autonomous agents and multi-agent systems, pp. 475-482 (2013, May).
- Zhang J., Yu Z., Mao S., Periaswamy S.C.G., Patton J., Xia X., IADRL: Imitation Augmented Deep Reinforcement Learning Enabled UGV-UAV Coalition for Tasking in Complex Environments, in IEEE Access, vol. 8, pp. 102335-102347, 2020, doi: 10.1109/ACCESS.2020.2997304.
- Zhao Y., Hernandez-Orallo J., When Being Selfish Prevails: The Impact of Sociality Regimes on Heterogeneous Cooperative-Competitive Multi-Agent Reinforcement Learning (2022).
- Zheng Y., Xia W., Jiang L., Yan F., Shen L., Distributed multi-agent cooperative resource sharing algorithm in fog networks, In GLOBECOM 2020-2020 IEEE Global Communications Conference, IEEE, pp. 1-6 (2020, December).