Have a personal or library account? Click to login
A Comparison of Ranking Methods Used in Multiobjective Optimization for Feature Selection in EEG Signals Cover

A Comparison of Ranking Methods Used in Multiobjective Optimization for Feature Selection in EEG Signals

By: Corina Cîmpanu  
Open Access
|Feb 2025

References

  1. Abhang P.A., Gawali B.W., Mehrotra S.C., Technological Basics of EEG Recording and Operation of Apparatus, in Introduction to EEG- and Speech-Based Emotion Recognition, Eds. Abhang P.A., Gawali B.W., Mehrotra S.C., 2, 19-50, Academic Press, Elsevier, 2016.
  2. Baars B.J., Gage N.M., The brain is conscious, Fundamentals of Cognitive Neuroscience - A Beginner’s Guide, 8, 211-252, Academic Press, Elsevier, 2013.
  3. Cabanero-Gomez L., Hervas R., Gonzalez I., Villarreal V., Studying the generalizability of cognitive load measured with EEG, Biomedical Signal Processing and Control, 70(103032), Elsevier, 2021.
  4. Cîmpanu C., Ferariu L., Genetic Multiobjective Fitness Assignment Scheme Applied to Robot Path Planning, Proceedings of the 10th International Conference on Electronics Computer and Computation, ICECO 2013, Ankara, Turkey, 196-199, IEEE.
  5. Cîmpanu C., Ferariu L., Ungureanu F., Dumitriu T., Genetic Feature Selection for Large EEG Data with Commutation between Multiple Classifiers, Proceedings of the IEEE 21st International Conference on System Theory, Control and Computing, ICSTCC 2017, Sinaia, Romania, 618-623, IEEE Xplore.
  6. Cîmpanu C., Ferariu L., Dumitriu T., Feature Selection via Genetic Multiobjective Optimization with Fuzzy Rejection Mechanisms, Proceedings of the IEEE 17th International Conference on Intelligent Computer Communication and Processing, ICCP 2021, Cluj, Romania, 437-444, IEEE.
  7. Cîmpanu C., EEG Multi-Objective Feature Selection using a Genetic Procedure with Hybrid Mutation Operator, Proceedings of the IEEE 24th International Conference on Control Systems and Computer Science, CSCS 2023, Bucharest, Romania, 128-135, IEEE.
  8. Cîmpanu C., On the impact of a classification model in EEG feature selection for cognitive load assessment, Buletinul Institutului Politehnic din Iaşi, published by „Gheorghe Asachi” Technical University of Iași, Automatic Control and Computer Science Section, Iași, România, 2023.
  9. Deb K., Multiobjective Optimization Using Evolutionary Algorithms, WileyandSons, 2001.
  10. Deb K., Pratap A., Agarwal S., Meyarivan T., A fast elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 6(2), 182-197, IEEE, 2002.
  11. Eggermont J.J., The alpha and delta rhythms and their interaction with other brain rhythms, Brain Oscillations, Synchrony, and Plasticity - Basic Principles and Application to Auditory-Related Disorders, 3, 43-58, Academic Press, Elsevier, 2021.
  12. Ferariu L., Cîmpanu C., Multi-Objective Genetic Algorithm with Clustering-based Ranking and Direct Control of Diversity, Proceedings of the 17th International Conference on System Theory, Control and Computing, ICSTCC 2013, Sinaia, Romania, 213-218, IEEE Xplore.
  13. Fink A., Benedek M., EEG alpha power and creative ideation, Neuroscience and Biobehavioral Reviews, 44(100), 111-123, Elsevier, 2014.
  14. Grana M., Morais-Quilez I., A review of Graph Neural Networks for Electroencephalography data analysis, Neurocomputing, 562, 126901, 1-11, Elsevier, 2023.
  15. Hipp J.F., Hawellek D.J., Corbetta M., Siegel M., Engel A.K., Large-scale cortical correlation structure of spontaneous oscillatory activity, Nature, 15(6), 884-892, Nature Neuroscience, 2012.
  16. Idowu O.P., Adelopo O., Ilesanmi A.E., Li X., Samuel O.W., Fang P., Li G., Neuro-evolutionary approach for optimal selection of EEG channels in motor imagery based BCI application, Biomedical Signal Processing and Control, 68, 102621, 1-16, Elsevier, 2021.
  17. Kane M.J., Conway A.R.A., Miura T.K., Colflesh G.J.H., Working memory, attention control, and the n-back task: A question of construct validity, Journal of Experimental Psychology: Learning, Memory, and Cognition, 33(3), 615–622, American Psychological Association, 2007.
  18. Kocadagli O., Ozer E., Batista A.G., Preictal phase detection on EEG signals using hybridized machine learning classifiers with a novel feature selection procedure based Gas and ICOMP, Expert Systems With Applications, 212, 118825, 1-11, Elsevier, 2023.
  19. Li C.T., Chen C.S., Cheng C.M., Chen C.P., Chen J.P., Chen M.H., Bai Y.M., Tsai S.J., Prediction of antidepressant responses to non-invasive brain stimulation using frontal electroencephalogram signals: Cross-dataset comparisons and validation, Journal of Affective Disorders, 1-10, Elsevier, 2023.
  20. Moini J., Piran P., Cerebral Cortex, in Functional and Clinical Neuroanatomy - A Guide for Health Care Professionals, 6, 177-240, Academic Press, Elsevier, 2020.
  21. Saibene A., Gasparini F., Genetic algorithm for feature selection of EEG heterogeneous data, Expert Systems with Applications, 217, 119488, 1-28, Elsevier, 2023.
  22. Stevens C.E., Zabelina D.L., Creativity comes in waves: an EEG-focused exploration of the creative brain, Current Opinion in Behavioral Sciences, 27, 154-162, Elsevier, 2019.
  23. Wang Y., Fang Z., Sun X., Lin X., Niu L., Ma W., An adaptive driver fatigue classification framework using EEG and attention-based hybrid neural network with individual feature subset, Biomedical Signal Processing and Control, 85, 105045, Elsevier, 2023.
  24. Zeynali M., Seyedarabi H., Afrouzian R., Classification of EEG signals using Transformer based deep learning and ensemble methods, Biomedical Signal Processing and Control, 86, 105130, Elsevier, 2023.
DOI: https://doi.org/10.2478/bipie-2023-0019 | Journal eISSN: 2537-2726 | Journal ISSN: 1223-8139
Language: English
Page range: 9 - 29
Submitted on: Nov 7, 2023
|
Accepted on: Dec 23, 2024
|
Published on: Feb 21, 2025
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Corina Cîmpanu, published by Gheorghe Asachi Technical University of Iasi
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.