Have a personal or library account? Click to login
Study of Heat Transfer and Flow Mechanism in Circular Backward-Facing Step Considering Ferrofluid Flow Under Magnetic Field Effect Cover

Study of Heat Transfer and Flow Mechanism in Circular Backward-Facing Step Considering Ferrofluid Flow Under Magnetic Field Effect

By: Emrehan Gürsoy and  Engin Gedik  
Open Access
|Aug 2024

References

  1. Abbassi H., Nassrallah S. Ben, MHD flow and heat transfer in a backward-facing step, Int. Commun. Heat Mass Transf. 34:231–237 (2007), doi:10.1016/J.ICHEATMASSTRANSFER.2006.09.010.
  2. Adun H., Wole-Osho I., Okonkwo E.C., Kavaz D., Dagbasi M., A critical review of specific heat capacity of hybrid nanofluids for thermal energy applications, J. Mol. Liq. 340:116890 (2021), doi:10.1016/J.MOLLIQ.2021.116890.
  3. Ahmed H.E., Kherbeet A.S., Ahmed M.I., Salman B.H., Heat transfer enhancement of micro-scale backward-facing step channel by using turbulators, Int. J. Heat Mass Transf. 126: 963–973 (2018), doi:10.1016/J.IJHEATMASSTRANSFER.2018.05.082.
  4. Ahmed N.A., Coanda Effect: Flow Phenomenon and Applications, CRC Press (2019).
  5. Bahmani M.H., Sheikhzadeh G., Zarringhalam M., Akbari O.A., Alrashed A.A.A.A., Shabani G.A.S., Goodarzi M., Investigation of turbulent heat transfer and nanofluid flow in a double pipe heat exchanger, Adv. Powder Technol. 29:273–282 (2018), doi:10.1016/J.APT.2017.11.013.
  6. Cadirci S., Gunes H., Heat Transfer Enhancement Behind a Backward Facing Step with Active Flow Control, J. Therm. Sci. Technol. Bilim. ve Tek. Derg. 34 (2014). Canonsburg A.D., ANSYS Fluent User ’ s Guide (2018).
  7. Chavan D., Pise A., Experimental Investigation of Effective Viscosity and Density of Nanofluids, Mater. Today Proc. 16:504–515 (2019), doi:10.1016/J.MATPR.2019.05.122.
  8. Chen L., Asai K., Nonomura T., Xi G., Liu T., A review of Backward-Facing Step (BFS) flow mechanisms, heat transfer and control, Therm. Sci. Eng. Prog. 6:194–216 (2018), doi:10.1016/J.TSEP.2018.04.004.
  9. Dyachenko A.Y., Smul’sky Y.I., Terekhov V.I., Yarygina N.I., Turbulent mixing of small-obstacle-induced perturbations with the separated shear layer behind a backward-facing step, Thermophys. Aeromechanics 22:677–688 (2015).
  10. Guo G. Ming, Liu H., Zhang B., Numerical study of active flow control over a hypersonic backward-facing step using supersonic jet in near space, Acta Astronaut. 132:256–267 (2017), doi:10.1016/J.ACTAASTRO.2016.12.035.
  11. Gürdal M., Pazarlıoğlu H.K., Tekir M., Arslan K., Gedik E., Numerical investigation on turbulent flow and heat transfer characteristics of ferro-nanofluid flowing in dimpled tube under magnetic field effect, Appl. Therm. Eng. 200:117655 (2022), doi:10.1016/J.APPLTHERMALENG.2021.117655.
  12. Gürsoy E., Kadir Pazarlıoğlu H., Dağdeviren A., Gürdal M., Gedik E., Arslan K., Kurt H., Energy analysis of magnetite nanofluid flowing in newly designed sudden expansion tube retrofitted with dimpled fin, Int. J. Heat Mass Transf. 199:123446 (2022), doi:10.1016/J.IJHEATMASSTRANSFER.2022.123446.
  13. Gürsoy E., Pazarlioğlu H.K., Gürdal M., Gedik E., Arslan K., Dağdeviren A., Investigation of magneto-convection characteristics in a sudden Expanding Channel with convex surface geometry under thermally developing flow conditions, Int. J. Numer. Methods Heat Fluid Flow (2024a).
  14. Gürsoy E., Pazarlıoğlu H.K., Gürdal M., Gedik E., Arslan K., Entropy generation of ferronanofluid flow in industrially designed bended dimpled tube, Therm. Sci. Eng. Prog. 37:101620 (2023), doi:10.1016/J.TSEP.2022.101620.
  15. Gürsoy E., Pazarlıoğlu H.K., Gürdal M., Gedik E., Arslan K., Parametric analysis of different Al2O3 nanoparticle shapes and expansion angles for sudden expanded tube regarding the first law of thermodynamics, Int. J. Therm. Sci. 197:108759 (2024b), doi:10.1016/J.IJTHERMALSCI.2023.108759.
  16. Hussein A.M., Sharma K.V., Bakar R.A., Kadirgama K., The effect of nanofluid volume concentration on heat transfer and friction factor inside a horizontal tube, J. Nanomater, 2013:1–12 (2013).
  17. Kherbeet A.S., Safaei M.R., Mohammed H.A., Salman B.H., Ahmed H.E., Alawi O.A., Al-Asadi M.T., Heat transfer and fluid flow over microscale backward and forward facing step: A review, Int. Commun. Heat Mass Transf. 76:237–244, (2016), doi:10.1016/J.ICHEATMASSTRANSFER.2016.05.022.
  18. Khodadadi H., Aghakhani S., Majd H., Kalbasi R., Wongwises S., Afrand M., A comprehensive review on rheological behavior of mono and hybrid nanofluids: Effective parameters and predictive correlations, Int. J. Heat Mass Transf. 127:997–1012 (2018), doi:10.1016/J.IJHEATMASSTRANSFER.2018.07.103.
  19. Lahmar S., Kezzar M., Eid M.R., Sari M.R., Heat transfer of squeezing unsteady nanofluid flow under the effects of an inclined magnetic field and variable thermal conductivity, Phys. A Stat. Mech. its Appl. 540:123138 (2020), doi:10.1016/J.PHYSA.2019.123138.
  20. Mehrez Z., El Cafsi A., Forced convection magnetohydrodynamic Al2O3–Cu/water hybrid nanofluid flow over a backward-facing step, J. Therm. Anal. Calorim. 135:1417–1427 (2019), doi:10.1007/s10973-018-7541-z.
  21. Pazarlıoğlu H.K., Gürsoy E., Gürdal M., Tekir M., Gedik E., Arslan K., Taşkesen E., The first and second law analyses of thermodynamics for CoFe2O4/H2O flow in a sudden expansion tube inserted elliptical dimpled fins, Int. J. Mech. Sci. 246:108144 (2023), doi:10.1016/J.IJMECSCI.2023.108144.
  22. Shah Z., Ikramullah P. Kumam, Selim M.M., Alshehri A., Impact of nanoparticles shape and radiation on the behavior of nanofluid under the Lorentz forces, Case Stud. Therm. Eng. 26:101161 (2021), doi:10.1016/J.CSITE.2021.101161.
  23. Sheikholeslami M., Rashidi M.M., Ganji D.D., Effect of non-uniform magnetic field on forced convection heat transfer of Fe3O4–water nanofluid, Comput. Methods Appl. Mech. Eng. 294:299–312 (2015), doi:10.1016/J.CMA.2015.06.010.
  24. Terekhov V.I., Dyachenko A.Y., Smulsky Y.J., Sunden B., Intensification of heat transfer behind the backward-facing step using tabs, Therm. Sci. Eng. Prog. 35:101475 (2022), doi:10.1016/J.TSEP.2022.101475.
  25. Trancossi M., An overview of scientific and technical literature on Coanda effect applied to nozzles, SAE Int. (2011), doi:doi:10.4271/2011-01-2591.
  26. Vafaei S., Yeager J.A., Daluga P., Scherer B., Forced convection nanofluid heat transfer as a function of distance in microchannels, Materials (Basel), 14:3021 (2021).
  27. Wang H., Wang H., Gao F., Zhou P., Zhai Z. (John), Literature review on pressure– velocity decoupling algorithms applied to built-environment CFD simulation, Build. Environ. 143:671–678 (2018), doi:10.1016/J.BUILDENV.2018.07.046.
  28. Xie W.A., Xi G.N., Fluid flow and heat transfer characteristics of separation and reattachment flow over a backward-facing step, Int. J. Refrig. 74:177–189 (2017), doi:10.1016/J.IJREFRIG.2016.10.006.
  29. Zdanski P.S.B., Vaz Jr M., Gargioni G.T., Convection heat transfer enhancement on recirculating flows in a backward facing step: The effects of a small square turbulence promoter, Heat Transf. Eng. 37:162–171 (2016).
DOI: https://doi.org/10.2478/bipie-2023-0010 | Journal eISSN: 2537-2726 | Journal ISSN: 1223-8139
Language: English
Page range: 71 - 90
Submitted on: Jun 14, 2024
Accepted on: Jul 28, 2024
Published on: Aug 30, 2024
Published by: Gheorghe Asachi Technical University of Iasi
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2024 Emrehan Gürsoy, Engin Gedik, published by Gheorghe Asachi Technical University of Iasi
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.