Have a personal or library account? Click to login
A Systematic Analysis of the Multi-Material FFF 3D Printing Process for Biodegradable Polymers Cover

A Systematic Analysis of the Multi-Material FFF 3D Printing Process for Biodegradable Polymers

Open Access
|Dec 2025

References

  1. Bakhtiari H., Aamir M., Tolouei-Rad M., Influence of 3D Printing Parameters on FFF Prints (2023), Retrieved May 18, 2025, from Encyclopedia: https://encyclopedia.pub/entry/40954.
  2. Ben Said L., Ayadi B., Alharbi S., Dammak F., Recent advances in additive manufacturing: A review of current developments and future directions, Machines, 13(9), 813 (2025), https://doi.org/10.3390/machines13090813.
  3. Brancewicz-Steinmetz E., Valverde Vergara R., Buzalski V. et al., Study of the adhesion between TPU and PLA in multi-material 3D printing, Journal of Achievements in Materials and Manufacturing Engineering, 115(2), 49-56(2022), https://doi.org/10.5604/01.3001.0016.2672.
  4. Chicos L.-A., Pop M.A., Zaharia S.-M., Lancea C., Buican G.R., Pascariu I.S., Stamate V.-M., Infill Density Influence on Mechanical and Thermal Properties of Short Carbon Fiber-Reinforced Polyamide Composites Manufactured by FFF Process, Materials, 15(10), 3706 (2022), https://doi.org/10.3390/ma15103706.
  5. Chouhan A., Tiwari A., Production of polyhydroxyalkanoate (PHA) biopolymer from crop residue using bacteria as an alternative to plastics: A Review, RSC Adv., 15, 11845-11862 (2025), https://doi.org/10.1039/D4RA08505A.
  6. Cojocaru V., Frunzaverde D., Miclosina C.-O., Marginean G., The Influence of the Process Parameters on the Mechanical Properties of PLA Specimens Produced by Fused Filament Fabrication‒A Review, Polymers, 14(5), 886, 1-23 (2022), https://doi.org/10.3390/polym14050886.
  7. Delia S., Rochman A., Curmi A., Factors affecting interface bonding in multi-material additive manufacturing, Progress in Additive Manufacturing, 9(5), 1365-1379 (2024), https://doi.org/10.1007/s40964-024-00617-w.
  8. Elhattab K., Bhaduri S.B., Sikder P., Influence of Fused Deposition Modelling Nozzle Temperature on the Rheology and Mechanical Properties of 3D Printed β-Tricalcium Phosphate (TCP)/Polylactic Acid (PLA) Composite, Polymers, 14(6), 1222 (2022), https://doi.org/10.3390/polym14061222.
  9. Fakhr Ghasemi A., Pinto Duarte J., A Systematic Review of Innovative Advances in Multi-Material Additive Manufacturing: Implications for Architecture and Construction, Materials, 18(8), 1820 (2025), https://doi.org/10.3390/ma18081820.
  10. Frascio M., Zafferani A., Monti M. et al., Investigating enhanced interfacial adhesion in multi-material filament 3D printing: a comparative study of t and Mickey Mouse geometries, Prog Addit Manuf, 9, 2113-2122 (2024), https://doi.org/10.1007/s40964-024-00570-8.
  11. Frone A.N., Batalu D., Chiulan I. et al., Morpho-Structural, Thermal and Mechanical Properties of PLA/PHB/Cellulose Biodegradable Nanocomposites Obtained by Compression Molding, Extrusion, and 3D Printing, Nanomaterials, 10(1), 51 (2020), https://doi.org/10.3390/nano10010051.
  12. Gao G., Xu F., Xu J., Tang G., Liu Z., A Survey of the Influence of Process Parameters on Mechanical Properties of Fused Deposition Modeling Parts, Micromachines, 13(4), 553, 1-28 (2022), https://doi.org/10.3390/mi13040553.
  13. García-Campo M.J., Boronat T., Quiles-Carrillo L., Balart R., Montanes N., Manufacturing and Characterization of Toughened Poly(lactic acid) (PLA) Formulations by Ternary Blends with Biopolyesters, Polymers, 10(1), 3 (2018), https://doi.org/10.3390/polym10010003.
  14. Giri J., Chiwande A., Gupta Y., Mahatme C., Giri P., Effect of process parameters on mechanical properties of 3d printed samples using FDM process, Materials Today: Proceedings, 47, 5856-5861 (2021), https://doi.org/10.1016/j.matpr.2021.04.283.
  15. Gonabadi H., Yadav A., Bull S.J., The effect of processing parameters on the mechanical characteristics of PLA produced by a 3D FFF printer, International Journal of Advanced Manufacturing Technology, 111, 695-709 (2020), https://doi.org/10.1007/s00170-020-06138-4.
  16. Korkut V., Daricık F., Aktitiz İ., Aydın K., Failure of surface modification 3D printed polymer materials by UV/ozone irradiation, Engineering Failure Analysis, 152, 107466 (2023), https://doi.org/10.1016/j.engfailanal.2023.107466.
  17. Kwon S., Hwang D., Understanding and Resolving 3D Printing Challenges: A Systematic Literature Review, Processes, 13(6), 1772 (2025), https://doi.org/10.3390/pr13061772.
  18. Kovalcik A., Recent Advances in 3D Printing of Polyhydroxyalkanoates: A Review, The EuroBiotech Journal, 5(1), 48-55 (2021), https://doi.org/10.2478/ebtj-2021-0008.
  19. Lin W., Shen H., Xu G., Zhang L., Fu J., Deng X., Single-layer temperature-adjusting transition method to improve the bond strength of 3D-printed PCL/PLA parts, Composites Part A: Applied Science and Manufacturing, 115, 22-30 (2018), https://doi.org/10.1016/j.compositesa.2018.09.008.
  20. Liu Y., Zhan Z., Ye H., Lin X., Yan Y., Zhang Y., Accelerated biodegradation of PLA/PHB-blended nonwovens by a microbial community, RSC Advances, 9, 10386-10394 (2019), https://doi.org/10.1039/C8RA10591J.
  21. Liu Z., Lei Q., Xing S., Mechanical characteristics of wood, ceramic, metal and carbon fiber-based PLA composites fabricated by FDM, Journal of Materials Research and Technology, 8(5), 3741-3751 (2019), https://doi.org/10.1016/j.jmrt.2019.06.034.
  22. Lorkowski L., Wybrzak K., Brancewicz-Steinmetz E., Świniarski J., Sawicki J., Influence of Print Speed on the Mechanical Performance of 3D-Printed Bio-Polymer Polylactic Acid, Materials, 18(8), 1765 (2025), https://doi.org/10.3390/ma18081765.
  23. Maszybrocka J., Dworak M., Nowakowska G., Osak P., Łosiewicz B., The Influence of the Gradient Infill of PLA Samples Produced with the FDM Technique on Their Mechanical Properties, Materials, 15(4), 1304 (2022), https://doi.org/10.3390/ma15041304.
  24. Mondragón-Herrera L.I., Vargas-Coronado R.F., Carrillo-Escalante H., Cauich-Rodríguez J.V., Hernández-Sánchez F., Velasco-Santos C., Avilés F., Mechanical, Thermal, and Physicochemical Properties of Filaments of Poly (Lactic Acid), Polyhydroxyalkanoates and Their Blend for Additive Manufacturing, Polymers, 16(8), 1062 (2024), https://doi.org/10.3390/polym16081062.
  25. Musa L., Kumar N.K., Abd Rahim S.Z. et al., A review on the potential of polylactic acid based thermoplastic elastomer as filament material for fused deposition modelling, Journal of Materials Research and Technology, 20, 2842-2843 (2022), https://doi.org/10.1016/j.jmrt.2022.08.057.
  26. Mustafa I., Kwok T.H., Interlacing Infills for Multi-Material Fused Filament Fabrication Using Layered Depth Material Images, Micromachines, 13(5), 773 (2022), https://doi.org/10.3390/mi13050773.
  27. Naser A.Z., Deiab I., Darras B.M., Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: a review, RSC Advances, 11, 17151-17196 (2021), https://doi.org/10.1039/D1RA02390J.
  28. Nazir A., Gokcekaya O., Billah K.M., Ertugrul O., Jiang J., Sun J., Hussain S., Multi-material additive manufacturing: A systematic review of design, properties, applications, challenges, and 3D printing of materials and cellular metamaterials, Materials & Design, 226, 111661 (2023), https://doi.org/10.1016/j.matdes.2023.111661.
  29. Park G., Jang H., Choi T. et al., Degradation behavior of poly(lactic acid) and poly(hydroxyalkanoate) blends in simulated marine environments, Macromol. Res. (2025), https://doi.org/10.1007/s13233-025-00393-8.
  30. Patel K.S., Solanki S.D., Shah D.B., Joschi S.J., Patel K.M., Finite element simulation of additive manufacturing process of carbon allotropes, International Journal on Interactive Design and Manufacturing, 18(9), 6889-6896 (2024), https://doi.org/10.1007/s12008-023-01221-y.
  31. Qayyum H., Hussain G., Sulaiman M., Hassan M., Ali A., Muhammad R., Wei H., Shehbaz T., Aamir M., Altaf K., Effect of Raster Angle and Infill Pattern on the In-Plane and Edgewise Flexural Properties of Fused Filament Fabricated Acrylonitrile–Butadiene–Styrene, Applied Sciences, 12(24), 12690 (2022), https://doi.org/10.3390/app122412690.
  32. Rafiee M., Farahani R.D., Therriault D., Multi-Material 3D and 4D Printing: A Survey, Adv. Sci., 7, 1902307 (2020), https://doi.org/10.1002/advs.201902307.
  33. Ribeiro M., Carneiro O.S., Ferreira da Silva A., Interface geometries in 3D multi-material prints by fused filament fabrication, Rapid Prototyp, 25(1), 38-46, (2019), https://doi.org/10.1108/RPJ-05-2017-0107.
  34. Sani A.R., Zolfagharian A., Kouzani A.Z., Artificial Intelligence-Augmented Additive Manufacturing: Insights on Closed-Loop 3D Printing, Adv. Intell. Syst., 6: 2400102 (2024), https://doi.org/10.1002/aisy.202400102.
  35. Slătineanu L., Dodun O., Nagîț G., Coteață M., Bosoancă G., Beșliu I., Fine Details Obtained by 3D Printing and Using Polymers, Plastic materials (in Romanian), 55(4), (2018), https://doi.org/10.37358/Mat.Plast.1964.
  36. Vanaei H.R., Shirinbayan M., Deligant M., Khelladi S., Tcharkhtchi A., In-Process Monitoring of Temperature Evolution during Fused Filament Fabrication: A Journey from Numerical to Experimental Approaches, Thermo, 1(3), 332-360 (2021), https://doi.org/10.3390/thermo1030021.
  37. Vălean C., The integrity and durability of 3D printed components (Unpublished doctoral thesis), Politehnica University of Timișoara (2023).
  38. ***, BASF 3D Printing Solutions BV., (2020), Technical data sheet for Ultrafuse PLA (No. 4.3), https://c.cdnmp.net/490505258/custom/prod/1_fisa_tehnica_1177.pdf?rv=1745528400.
  39. ***, ColorFabb. (2023), Technical datasheet PLA/PHA (No. 1.0), https://colorfabb.com/media/datasheets/tds/colorfabb/TDS_E_ColorFabb_PLA_PHA.pdf.
  40. ***, 3DPrinterAddons, (n.d.), Mastering dual extruder calibration: A comprehensive guide for flawless 3D prints, Retrieved July 2, 2025, from: https://3dprinteraddons.com/dual-extruder-calibration/.
  41. ***, James M. (2024, November 12), Layer Height in 3D Printing: How to Balance Quality, Strength, and Speed, Retrieved May 17, 2025, Kingroon, https://kingroon.com/blogs/3d-print-101/layer-height-in-3d-printing.
  42. ***, Printing with Multiple Extruders, (n.d.), Retrieved May 19, 2025, from Simplify3D: https://www.simplify3d.com/resources/articles/printing-with-multiple-extruders/.
  43. ***, Prior M. (2024, January 22), All you need to know about multi-material 3D printing. 3Dnatives, https://www.3dnatives.com/en/all-you-need-to-know-about-multi-material-3d-printing-220120245/.
  44. ***, Protolabs Networ, (n.d.), What are the optimal shell and infill parameters for FDM 3D printing? Retrieved May 19, 2025, from: https://www.hubs.com/knowledge-base/selecting-optimal-shell-and-infill-parameters-fdm-3d-printing/.
  45. ***, Raise3D, (2024, December 18), Infill 3D printing: Patterns, density and issues, https://www.raise3d.com/blog/infill-3d-printing/.
  46. ***, Raje K., (2025, July 02), Biopolymers Market Trends and Future Opportunities, Retrieved July 02, 2025, from: https://www.cognitivemarketresearch.com/articles/biopolymers-market-trends-and-future-opportunities.
  47. ***, Singh M., (2025, June 27), Quality standards in metal additive manufacturing, IIQ Edu, https://iiqedu.org/quality-standards-in-metal-additive-manufacturing/.
  48. ***, Stella, (2025, March 18), What is PLA? The ultimate guide to eco-friendly 3D printing, Meshy. Retrieved May 15, 2025, from https://www.meshy.ai/blog/what-is-pla.
  49. ***, The environmental benefits of biopolymers, (n.d.), Polymer Search. Retrieved May 15, 2025, from: https://polymer-search.com/the-environmental-benefits-ofbiopolymers/.
  50. ***, Wickstrom S., (2025), Multi-material 3D printing: Applications & tips, UltiMaker. https://ultimaker.com/learn/multi-material-3d-printing-applications-tips/.
  51. ***, Xometry, (2023, September 12), Infill in 3D printing: Definition, main parts, and different types, Xometry. Retrieved May 18, 2025, from: https://xometry.pro/en/articles/3d-printing-infill/.
  52. ***, Yang A., (2025, June 4), PLA bed temperature guide [+Pro tips]. Unionfab, https://www.unionfab.com/blog/2024/06/pla-bed-temperature.
DOI: https://doi.org/10.2478/bipcm-2025-0040 | Journal eISSN: 2537-4869 | Journal ISSN: 1011-2855
Language: English
Page range: 115 - 133
Submitted on: Aug 2, 2025
Accepted on: Nov 12, 2025
Published on: Dec 6, 2025
Published by: Gheorghe Asachi Technical University of Iasi
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Maria Catana Oancea, Simona-Nicoleta Mazurchevici, Lucian Oancea, Dumitru Nedelcu, published by Gheorghe Asachi Technical University of Iasi
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.