References
- Adeh E.H., Selker J.S., Higgins C.W., Remarkable agrivoltaic influence on soil moisture, micrometeorology and water-use efficiency, PLOS ONE (2018), doi:10.1371/journal.pone.0203256.
- Agrivoltaics, Washington D.C.: Global Environment Facility investing in our planet (2024).
- Amaducci S., Yin X., Colauzzi M., Agrivoltaic systems to optimise land use for electric energy production, Applied Energy, 220, 545-561 (2018), doi:10.1016/j.apenergy.2018.03.081.
- Aroca-Delgado R., Pérez-Alonso J., Callejón-Ferre Á.J., Velázquez-Martí B., Compatibility between crops and solar panels: an overview from shading systems, Sustainability, 10(743), (2018), doi:10.3390/su10030743.
- Barron-Gafford G., Pavao-Zuckerman M., Minor R., Sutter L., Barnett-Moreno I., Blackett D., Macknick J., Agrivoltaics provide mutual benefits across the food-energy-water nexus in drylands, Nature sustainability (2019), doi:10.1038/s41893-019-0364-5.
- Campana P.E., Stridh B., Amaducci S., Colauzzi M., Optimisation of vertically mounted agrivoltaic systems, Journal of Cleaner Production, 325(129091), (2021), doi:10.1016/j.jclepro.2021.129091.
- Dinesh H., Pearce J., The potential of agrivoltaic systems, Renewable and Sustainable Energy Review, 54, 299-308 (2016), doi:10.1016/j.rser.2015.10.024.
- Dupraz C., Marrou H., Talbot G., Dufour L., Nogier A., Ferard Y., Combining solar photovoltaicc panels and food crops for optimising land use: Towards new agrivoltaic schemes, Renewable Energy, 36, 2725-2732 (2011), doi:10.1016/j.renene.2011.03.005.
- Elamri Y., Cheviron B., Lopez J.-M., Dejean C., Belaud G., Water budget and crop modelling for agrivoltaic systems: application to irrigated lettuces, Agricultural Water Management, 208, 440-453 (2018), doi:10.1016/j.agwat.2018.07.001.
- Esetlili B.Ç., Esetlili M.T., Emir K., Eröz M., Sustainable agrivoltaic farming: the role of mycorrhiza in promoting mint cultivation and high-quality essential oil production, Sustainability, 17(5516), (2025), doi:10.3390/su17125516.
- Farmonaut, Agri Voltaics: transforming sustainable farming in 2025, (2025), Retrieved from blog: farmonaut.com/agri-voltaics-transforming-sustainable-farming-in-2025.
- Gorjian S., Jamshidian F.J., Gorjian A., Faridi H., Vafaei M., Zhang F., . . . Campana P. E., Technological advancements and research prospects of innovative concentrating agrivoltaics, Applied Energy, 337(120799), (2023), doi:10.1016/j.apenergy.2023.120799.
- Kabeya P.K., Mndzebele D., Ntlamelle M., Samikwa D., Simalabwi A., Takawira A., Jembere K., A regional approach to implementing the WEF nexus: a case study, In M. Tafadzwa, M. Albert, M. Festo, S. Aidan, J. Graham, & Elsevier (Ed.), Water-Energy-Food Nexus Narratives and Resource Securities. AA Global South Perspective (pp. 145-167), (2022), doi:10.1016/B978-0-323-912223-5.00017-4.
- Laub M., Pataczek L., Feuerbacher A., Zikeli S., Högy P., Contrasting yield responses at varing levels of shade suggest different suitability of crops for dual land0use systems: a meta-analysis, Agronomy for Sustainable Development (42:51), (2022), doi:10.1007/s13593-022-00783-7.
- Macknick J., Hartmann H., Barron-Gafford G., Beatty B., Burton R., Choi C.S., Walston L., The 5 Cs of agrivoltaic success factors in the United States: lessons from the InSPIRE research study, NREL. National Renewable Energy Laboratory (2022), Retrieved from www.nrel.gov.
- Mahlknecht J., GonzáleZ-Bravo R., Loge F., Water-energy-food security: A Nexus perspective of the current situation in Latin America and the Caribbean, Energy, 194(116824), (2020), doi:10.1016/j.energy.2019.116824.
- Marrou H., Wery J., Dufour L., Dupraz C., Productivity and radiation use efficiency of lettuces grow in the partial shade of photovoltaic panels, European Journal of Agronomy, 44, 54-66 (2013), doi:10.1016/j.eja.2012.08.003.
- Mehta K., Zörner W., Optimizing agri-PV system: systematic methodology to assess key design parameters, Energies, 18(3877), (2025).
- Ravi S., Macknick J., Lobell D., Field C., Ganesan K., Jain R., . . . Stoltenberg B., Colocation opportunities for large solar infrastructures and agriculture in drylands, Applied Energy, 165, 383-392 (2016), doi:10.1016/j.apenergy.2015.12.078.
- Riaz M.H., Imran H., Alam H., Alam M.A., Butt N.Z., Crop-specific optimization of bifacial PV arrays for agrivoltaic food-energy production: The light-productivity-factor approach, IEEE Journal of Photovoltaics, 12(2), 572-580, (2022).
- Saka K., Evaluation of a grid-connected PV power plant: performance and aagrivoltaic aspects, Environment, Development and Sustainability, 26, 32319-32336 (2024), doi:10.1007/s10668-024-05098-z.
- Schindele S., Trommsdorff M., Schlaak A., Obergfell T., Bopp G., Reise C., Weber E., Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications, Applied Energy, 265(114737), (2020), doi:10.1016/j.apenergy.2020.114737.
- Schneider M.A. K., Fraunhofer Institute for Solar Energy Systems ISE (2017), Retrieved may 5, 2025, from https://www.ise.fraunhofer.de/: https://www.ise.fraunhofer.de/en/press-media/press-releases/2017/harvesting-the-sun-for-power-and-produce-agrophotovoltaics-increases-the-land-use-efficiency-by-over-60-percent.html.
- Trommsdorff M., Campana P.E., Macknick J., Solas Á.F., Gorjian S., Tsanakas I., Dual land use for agriculture and solar power production: overview and performance of agrivoltaic systems, Germany: International Energy Agency. (2025).
- Weselek A., Ehmann A., Zikeli S., Lewandowski I., Schindele S., Högy P., Agrophotovoltaic systems: applications, challenges, and oportunities, A review. Agronomy for Sustainable Development, 39(35), (2019), doi:10.1007/s13593-019-0581-3.
- Zainali S., Lu S.M., Stridh B., Avelin A., Amaducci S., Colauzzi M., Campana P.E., Direct and diffuse shading factors modelling for the most representative agrivoltaic system layouts, Applied Energy, 339(120981), (2023).