Have a personal or library account? Click to login
Discrete-Event Simulation for Smart Manufacturing: Assessing Software, Industry Adoption, and Future Research Challenges Cover

Discrete-Event Simulation for Smart Manufacturing: Assessing Software, Industry Adoption, and Future Research Challenges

Open Access
|May 2025

References

  1. Alomari I., Al-Samarraie H., Yousef R., The Role of Gamification Techniques in Promoting Student Learning: A Review and Synthesis, Journal of Information Technology Education: Research, 18, pp. 395-417 (2019), Available at: https://doi.org/10.28945/4417.
  2. Bangsow S., Tecnomatix Plant Simulation: Modeling and Programming by Means of Examples, Cham: Springer International Publishing (2020), Available at: https://doi.org/10.1007/978-3-030-41544-0.
  3. Baumann-Birkbeck L. et al., Can a virtual microbiology simulation be as effective as the traditional Wetlab for pharmacy student education?, BMC Medical Education, 21(1), p. 583 (2021), Available at: https://doi.org/10.1186/s12909-021-03000-3.
  4. Brailsford S.C. et al., An Analysis of the Academic Literature on Simulation and Modeling in Health Care, in N. Mustafee (Ed.) Operational Research for Emergency Planning in Healthcare: Volume 2. London: Palgrave Macmillan UK, pp. 231-251 (2016), Available at: https://doi.org/10.1007/978-1-137-57328-5_11.
  5. Breznik M., Buchmeister B., Vujica Herzog N., Assembly Line Optimization Using MTM Time Standard and Simulation Modeling‒A Case Study, Applied Sciences, 13(10), p. 6265 (2023), Available at: https://doi.org/10.3390/app13106265.
  6. Carter J.L., Coletti R.J., Harris R.P., Quantifying and monitoring overdiagnosis in cancer screening: a systematic review of methods, BMJ, 350, p. 18 (2015), Available at: https://doi.org/10.1136/bmj.g7773.
  7. Chen T., Chiu M.-C., Development of a cloud-based factory simulation system for enabling ubiquitous factory simulation, Robotics and Computer-Integrated Manufacturing, 45, pp. 133-143 (2017), Available at: https://doi.org/10.1016/j.rcim.2015.12.010.
  8. Ďuriška M. et al., Use of a Software Application to Generate a Sequence for Simulation Model Creation, Applied Sciences, 13(9), p. 5433 (2023), Available at: https://doi.org/10.3390/app13095433.
  9. Fabbri A., Simulation of regional logistics systems with agent-based modelling: a Dubai case study, Politecnico di Torino (2020), Available at: https://webthesis.biblio.polito.it/14700/ (Accessed: 21 March 2025).
  10. Fedorko G. et al., Research on Using the Tecnomatix Plant Simulation for Simulation and Visualization of Traffic Processes at the Traffic Node, Applied Sciences, 12(23), p. 12131 (2022), Available at: https://doi.org/10.3390/app122312131.
  11. Goldsman D., Nance R., Wilson J., A brief history of simulation revisited, in Proceedings - Winter Simulation Conference, pp. 567-574 (2010), Available at: https://doi.org/10.1109/WSC.2010.5679129.
  12. Guseva E. et al., Discrete event simulation modelling of patient service management with Arena, Journal of Physics: Conference Series, 1015(3), p. 032095 (2018), Available at: https://doi.org/10.1088/1742-6596/1015/3/032095.
  13. Habibifar N. et al., Performance optimisation of a pharmaceutical production line by integrated simulation and data envelopment analysis, International Journal of Simulation and Process Modelling, 14, p. 360 (2019), Available at: https://doi.org/10.1504/IJSPM.2019.103587.
  14. Hofmann W., Branding F., Implementation of an IoT- and Cloud-based Digital Twin for Real-Time Decision Support in Port Operations, IFAC-PapersOnLine, 52(13), pp. 2104-2109 (2019), Available at: https://doi.org/10.1016/j.ifacol.2019.11.516.
  15. Hovanec M. et al., Simulating a Digital Factory and Improving Production Efficiency by Using Virtual Reality Technology, Applied Sciences, 13(8), p. 5118 (2023), Available at: https://doi.org/10.3390/app13085118.
  16. Ivanov D., Operations and Supply Chain Simulation with AnyLogic, 2nd edition, Berlin: Berlin School of Economics and Law (2017), Available at: https://www.google.com/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.anylogic.com/upload/pdf/Ivanov_AL_book_2017.pdf&ved=2ahUKEwizvtr6huGMAxXvcvEDHSqKC0cQFnoECBkQAQ&usg=AOvVaw0SXi6F Ed9EyK7IT3im8hbA.
  17. Ivanov D., Introduction to Supply Chain Analytics: With Examples in AnyLogic and anyLogistix Software, Cham: Springer Nature Switzerland (Classroom Companion: Business) (2024), Available at: https://doi.org/10.1007/978-3-031-51241-4.
  18. Kim H. et al., Modeling the future of tobacco control: Using SimSmoke to explore the feasibility of the tobacco endgame in Korea, Tobacco Induced Diseases, 21, p. 147 (2023), Available at: https://doi.org/10.18332/tid/174127.
  19. Kreft J.-U., Booth G., Wimpenny J.W.T., BacSim, a simulator for individual-based modelling of bacterial colony growth, Microbiology, 144(12), pp. 3275-3287 (1998), Available at: https://doi.org/10.1099/00221287-144-12-3275.
  20. Leal F. et al., A practical guide for operational validation of discrete simulation models, Pesquisa Operacional, 31, pp. 57-77 (2011), Available at: https://doi.org/10.1590/S0101-74382011000100005.
  21. Martins L.M. et al., Comparative study of autonomous production control methods using simulation, Simulation Modelling Practice and Theory, 104, p. 102142 (2020), Available at: https://doi.org/10.1016/j.simpat.2020.102142.
  22. Oliff H. et al., The Ethical Use of Human Data for Smart Manufacturing: An Analysis and Discussion, Procedia CIRP, 93, pp. 1364-1369 (2020), Available at: https://doi.org/10.1016/j.procir.2020.06.001.
  23. Pires M.C. et al., Simulation-Based Optimization for the Integrated Control of Production and Logistics: A Performance Comparison, IFAC-PapersOnLine, 53(2), pp. 10639-10644 (2020), Available at: https://doi.org/10.1016/j.ifacol.2020.12.2824.
  24. Reynolds M. et al., Using discrete event simulation to design a more efficient hospital pharmacy for outpatients, Health Care Management Science, 14(3), pp. 223-236 (2011), Available at: https://doi.org/10.1007/s10729-011-9151-1.
  25. Robinson S., Exploring the relationship between simulation model accuracy and complexity, Journal of the Operational Research Society, 74(9), pp. 1992-2011 (2023), Available at: https://doi.org/10.1080/01605682.2022.2122740.
  26. Siderska J., Application of Tecnomatix Plant Simulation for modeling production and logistics processes, Business, Management and Economics Engineering, 14(1), pp. 64-73 (2016), Available at: https://doi.org/10.3846/bme.2016.316.
  27. Stanković R., Božić, D., Applying Simulation Modelling in Quantifying Optimization Results, Tehnički glasnik, 15(4), pp. 518-523 (2021), Available at: https://doi.org/10.31803/tg-20210326111551.
  28. Vázquez-Serrano J., Peimbert-García R., Cárdenas-Barrón L., Discrete-Event Simulation Modeling in Healthcare: A Comprehensive Review, International Journal of Environmental Research and Public Health, 18, p. 12262 (2021), Available at: https://doi.org/10.3390/ijerph182212262.
  29. VDI 3633 Part 1, Simulation of Systems in Materials Handling, Logistics and Production: Fundamentals, Verein Deutscher Ingenieure (VDI) (2014), Available at: https://www.vdi.de/en/home/vdi-standards/details/vdi-3633-blatt-1-simulation-of-systems-in-materials-handling-logistics-and-production-fundamentals (Accessed: 27 March 2025).
  30. Zhang P. et al., Health Utility Scores for People with Type 2 Diabetes in U.S. Managed Care Health Plans, Diabetes Care, 35(11), pp. 2250-2256 (2012), Available at: https://doi.org/10.2337/dc11-2478.
  31. Zhang X., Application of discrete event simulation in health care: a systematic review, BMC Health Services Research, 18(1), p. 687 (2018), Available at: https://doi.org/10.1186/s12913-018-3456-4.
  32. Zhao J., Aghezzaf E.-H., Cottyn J., An extension of the Core Manufacturing Simulation Data standard to enhance the interoperability for discrete event simulation, Procedia CIRP, 130, pp. 1632-1637 (2024a), Available at: https://doi.org/10.1016/j.procir.2024.10.293.
  33. Zhao J., Aghezzaf E.-H., Cottyn J., Interoperability performance evaluation for discrete event simulation models: A step towards multi-level data exchange, Procedia CIRP, 128, pp. 72-77 (2024b), Available at: https://doi.org/10.1016/j.procir.2024.06.007.
DOI: https://doi.org/10.2478/bipcm-2025-0009 | Journal eISSN: 2537-4869 | Journal ISSN: 1011-2855
Language: English
Page range: 105 - 124
Submitted on: Apr 2, 2025
Accepted on: Apr 30, 2025
Published on: May 19, 2025
Published by: Gheorghe Asachi Technical University of Iasi
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Martin Robert Ciauşu-Sliwa, Dana Ciauşu-Sliwa, Oana Dodun, published by Gheorghe Asachi Technical University of Iasi
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.