Have a personal or library account? Click to login
Overview of Data-Driven Methods for District Heating Systems Diagnosis Cover
Open Access
|Jan 2025

References

  1. Autodesk Inc., https://www.autodesk.com/products/revit, Retrieved Dec 2024.
  2. Chen K., Hu J., Yu L., Zheng M., Sun S., He D., Lin J., A Data-driven Model of Pipe Diameter and Insulation Thickness Optimization for District Heating Systems, Journal of Physics: Conference Series, Volume 2166, International Conference on Frontiers of Electrical Power & Energy Systems, 2022.
  3. DesignBuilder Software Ltd, https://designbuilder.co.uk, Retrieved Nov 2024.
  4. European Commission, 2050 Long-Term Strategy, (https://climate.ec.europa.eu/eu-action/climate-strategies-targets/2050-long-term-strategy_en), Retrieved Nov 2024.
  5. Fumo N., A review on the basics of building energy estimation, Renewable and Sustainable Energy Reviews, Volume 31, 2014, Pages 53-60.
  6. Geysen D, De Somer O., Johansson C., Brage J., Vanhoudt D., Operational thermal load forecasting in district heating networks using machine learning and expert advice, Energy and Buildings, Volume 162, 2018, Pages 144-153.
  7. IEA DHC, Annex XIII Project 03, 2023 (https://www.iea-dhc.org/the-research/annexes/annex-xiii/annex-xiii-project-03)
  8. Kaggle, dataset: Fault Detection and Diagnosis in District Heating, (https://www.kaggle.com/datasets/mathieuvallee/ai-dhc/data)
  9. Liu Y., Chen H., Zhang L., Feng Z., Enhancing building energy efficiency using a random forest model: A hybrid prediction approach, Energy Reports, Volume 7, 2021, Pages 5003-5012.
  10. Mbiydzenyuy G., Nowaczyk S., Knuttson H., Vanhoudt D., Brage J., Calikus E., Opportunities for Machine Learning in District Heating, Applied Sciences. 2021; 11(13):6112.
  11. Ntakolia C., Anagnostis A., Moustakidis S. et al., Machine learning applied on the district heating and cooling sector: a review, Energy Systems, 2022; Volume 13, Pages 1-30.
  12. Palasz P., Przysowa R., Using Different ML Algorithms and Hyperparameter Optimization to Predict Heat Meters’ Failures, Applied Sciences. 2019; 9(18):3719.
  13. Sakkas N.P., Abang R., Thermal load prediction of communal district heating systems by applying data-driven machine learning methods, Energy Reports, Volume 8, 2022, Pages 1883-1895.
  14. Song J., Zhang L., Xue G., Ma Y., Gao S., Jiang Q., Predicting hourly heating load in a district heating system based on a hybrid CNN-LSTM model, Energy and Buildings, Volume 243, 2021, 110998.
  15. United Nations, World Urbanization Prospects, 2018, (https://www.un.org/development/desa/pd/news/world-urbanization-prospects-2018)
  16. United Nations, World Population Prospects, 2024, (https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/undesa_pd_2024_wpp_2024_advance_unedited_0.pdf).
  17. Vallee M., Wissocq T., Gaoua Y., Lamaison N., Generation and evaluation of a synthetic dataset to improve fault detection in district heating and cooling systems, Energy, Volume 283, 2023, 128387.
  18. Wang P., Poovendran P., Manokaran K.B., Fault detection and control in integrated energy system using machine learning, Sustainable Energy Technologies and Assessments, Volume 47, 101366.
  19. Werner S., International review of district heating and cooling, Energy, Volume 137, 2017, Pages 617-631.
DOI: https://doi.org/10.2478/bipcm-2024-0015 | Journal eISSN: 2537-4869 | Journal ISSN: 1011-2855
Language: English
Page range: 45 - 55
Submitted on: Dec 1, 2024
Accepted on: Dec 16, 2024
Published on: Jan 20, 2025
Published by: Gheorghe Asachi Technical University of Iasi
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2025 Alexandru Cebotari, Daniela Popescu, published by Gheorghe Asachi Technical University of Iasi
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.