References
- Arduino, www.arduino.cc, accessed in 14 December 2023.
- Chitariu D. F., Analiza influenței rigidității dispozitivelor modulare asupra preciziei de prelucrare, Ed. Performantica, Iași, 2018.
- Fodor D.C., Seghedin N.E., Technical progress in limb prostheses: a classification of existing devices, Bul. Inst. Polit. Iaşi, 68 (72), 3, 31-40 (2022), doi: 10.2478/bipcm-2022-0023.
- Handson Technology, www.handsontec.cc, accessed in 14 December 2023.
- HBM - Höttinger Baldwin Messtechnik, www.hbm.com, accessed in December 2023.
- Kadhim F.M., Jweeg M.J., Al-Kkow R.N.Y., Tahir M.S.A., Design of adjustable prosthetic pylon for children amputees: Numerical analysis case study, In International Review of Applied Sciences and Engineering, 14, 3, 349-357 (2023), https://doi.org/10.1556/1848.2023.00569.
- Lenka P.K., Chowdhury A.R., Kumar R., Design & Development of Lower Extremity Paediatric Prosthesis, a Requirement in Developing Countries, IJPMR, 19 (1): 8-12 (2008).
- Össur, Height Adjustable Pylon, www.ossur.com, accessed in 14 December 2023.
- Padhi J.K., Swain P., Das S.M., Mohanty S., Rout S.K., Development of an Adjustable Pylon for Lower Limb Prosthesis: A Prototype, In International Journal of Health Sciences and Research, 12, 4, 120-123 (2022), https://doi.org/10.52403/ijhsr.20220414.
- Pereiro-Buceta H., Becerro-de-Bengoa-Vallejo R., Losa-Iglesias M.E., López-López D., Navarro-Flores E., Martínez-Jiménez E.M., Martiniano J., Calvo-Lobo C., The Effect of Simulated Leg-Length Discrepancy on the Dynamic Parameters of the Feet during Gait-Cross-Sectional Research, Healthcare, 9, 932, 2021, https://doi.org/10.3390/healthcare9080932.
- Vanguard, Kinetic Revolutions Adjustable Pylon, www.vanguardorthopedicsales.com, accessed in 13 December 2015.
- Vrhovski Z., Obrovac K., Nižetić J., Mutka A., Klobučar H., Bogdan S., System for Evaluation and Compensation of Leg Length Discrepancy for Human Body Balancing, Applied Sciences, 9(12), 2504, 2019, doi:10.3390/app9122504.