Have a personal or library account? Click to login

The Influence of 3D Printing Parameters on the Mechanical Properties of Reinforced PLA – A Review

Open Access
|Jul 2023

References

  1. Awal A., Cescutti G., Ghosh S.B., Müssig J., Interfacial studies of natural fibre/polypropylene composites using single fibre fragmentation test (SFFT), Composites Part A: Applied Science and Manufacturing, 42(1), 50-56, (2011).
  2. Awal A., Ghosh S., Sain M., Thermal properties and spectral characterization of wood pulp reinforced bio-composite fibers, Journal Hermal Analysis and Calorimetry, 99(2), 695-701, doi:10.1007/s10973-009-0100-x, (2010).
  3. Awal A., Sain M., Chowdhury M., Thermal analysis and spectroscopic studies of electrospun nano-scale composite fibers, Journal of Thermal Analysis and Calorimetry, 107(3), 1237-1242, doi:10.1007/s10973-011-1875-0, (2012).
  4. Awal A., Rana M., Sain M., Thermorheological and mechanical properties of cellulose reinforced PLA bio-composites, Mechanics of Materials, Elsevier Ltd, 80 (Part A), 87-95, doi:10.1016/j.mechmat.2014.09.009, (2015).
  5. Awal A., Sain M., Chowdhury M., Preparation of cellulose-based nanocomposite fibers by electrospinning and understanding the effect of processing parameters, Composites Part B: Engineering, 42(5), 1220-1225, doi:10.1016/j.compositesb.2011.02.011, (2011).
  6. Bejan M., Ingineria – artă sau meșteșug, vol. 4; (Engineering – Art or Craft, vol. 4), Editura AGIR, București, 2019 și Editura MEGA, Cluj Napoca, 2019.
  7. Berce P., Tehnologii de fabricație prin adăugare de material și aplicațiile lor, (Additive manufacturing technologies and their applications), Editura Academiei Române, București, România, 2014.
  8. Carneiro O.S., Silva A.F., Fused deposition modeling with polypropylene, http://dx.doi.org/10.1016/j.matdes.2015.06.053, (2015).
  9. Ciofu C., Mazurchevici S.-N., Maldonado-Cortes D., Pena Paras L., Quintanilla Correa D.I., Nedelcu D., Tribological Behavior of PLA Biodegradable Materials used in the Automotive Industry, International Journal of Modern Manufacturing Technologies 11 (3), 83-88, (2019).
  10. Correa D., Papadopoulou A., Guberan C., Jhaveri N., Reichert S., Menges A., Tibbits S., 3D-Printed Wood: Programming Hygroscopic, Material Transformation, 2(3), Mary Ann Liebert, Inc., DOI: 10.1089/3dp.2015.0022, (2015).
  11. Faludi G., Dora G., Renner K., Móczó J., Pukánszky B., Improving interfacial adhesion in PLA/wood biocomposites, Compos. Sci. Technol., 89, 77-82, http://dx.doi.org/10.1016/j.compscitech.2013.09.009, (2013).
  12. Gaoa Wei, Zhang Yunbo, Ramanujana Devarajan, Ramani Karthik, Chenc Yong, Christopher B. Williams, Charlie C.L. Wang, Yung C. Shina, Song Zhang, Pablo D. Zavattieri, The status, challenges, and future of additive manufacturing in engineering, http://dx.doi.org/10.1016/j.cad.2015.04.001, (2015).
  13. Graupner N., Application of lignin as natural adhesion promoter in cotton fibrereinforced poly(lactic acid) (PLA) composites, Journal of Materials Science, 43(15), 5222-5229, DOI:10.1007/s10853-008-2762-3 (2008).
  14. Graupner N., Herrmann A.S., Müssig J., Natural and man-made cellulose fibrereinforced poly(lactic acid) (PLA) composites: An overview about mechanical characteristics and application areas, Composites Part A: Applied Science and Manufacturing, 40(6-7), 810-821 (2009).
  15. Graupner N., Axel S. Herrmann, Jörg Müssig, A comparison of the mechanical characteristics of kenaf and lyocell fibre einforced poly(lactic acid) (PLA) and poly(3-hydroxybutyrate) (PHB) composites, Composites Part A: Applied Science and Manufacturing, 42(12), 2010-2019 doi:10.1016/j.compositesa.2009.04.003, (2011).
  16. Huda M.S., Drzal L.T., Mohanty A.K., Misra M., Effect of fiber surfacetreatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers, Composites Science and Technology, 68(2), 424-432 (2008).
  17. Jianu C., Spiridon Ș.-I., Ioniţă Gh., Tehnologia de fabricație aditivă 3d: inovație și aplicabilitate în domeniul ingineriei, Institutul Național de Cercetare-Dezvoltare pentru Tehnologii Criogenice și Izotopice, Râmnicu Vâlcea, România, Buletinul AGIR, 3-4, 102-107, (2020).
  18. Le Duigou A., Castro M., Bevan R., Martin N., 3D printing of wood fibre biocomposites: From mechanical to actuation functionality, https://doi.org/10.1016/j.matdes.2016.02.018 (2015).
  19. Liu L.S., Fishman M.L., Hicks K.B., Liu C.-K., Biodegradable Composites from Sugar Beet Pulp and Poly(lactic acid), Journal of Agricultural and Food Chemistry, 53(23), 9017-9022, (2005).
  20. Ma Quanjina, M.R.M. Rejaba, M.S.Idrisa, Nallapaneni Manoj Kumarc, M.H. Abdullaha, Guduru Ramakrishna Reddyd, Recent 3D and 4D intelligent printing technologies: A comparative review and future perspective, Procedia Computer Science 167(9):1210-1219, DOI: 10.1016/j.procs.2020.03.434, (2020).
  21. Masud S. Huda, Lawrence T. Drzal, Amar K. Mohanty, Manjusri Misra, Fabrication and mechanical properties of completely biodegradable hemp fiber reinforced polylactic acid composites, Journal of Composite Materials, 41(13), 1655-1669, doi:10.1016/j.compscitech.2007.06.022, (2007).
  22. Mazurchevici A.D., Contribuții la studiul procesului de printare 3D a materialelor biodegradabile, Teză doctorat - Universitatea Tehnică’’Gheorghe Asachi’’ din Iași-Facultatea de Constructii de Mașini și Management Industrial – Departamentul de Tehnologia Construcțiilor Mașini, (2020).
  23. Mazurchevici A.D., Carausu C., Ciofu C., Popa R., Mazurchevici S.-N., Nedelcu D., Infill and Type Influence on Tensile Strength of PLA Biodegradable Material using FDM Technology, International Journal of Modern Manufacturing Technologies 11 (2), 44-49, (2019).
  24. Mazzanti V., Malagutti L., Mollica F., FDM 3D Printing of Polymers Containing Natural Fillers: A Review of their Mechanical Properties, Polymers 2019, 11(7), 1094, https://doi.org/10.3390/polym11071094.
  25. Migneault S., Koubaa A., Perré P., Riedl B., Effects of wood fiber surface chemistry on strength of wood–plastic composites, Appl. Surf. Sci. 343, 11-18, http://dx.doi.org/10.1016/j.apsusc.2015.03.010, (2015).
  26. Nedelcu D., Mazurchevici S.-N., Popa R.-I., Lohan N.-M., Maldonado-Cortés D., Carausu C., Tribological and dynamical mechanical behavior of prototyped PLA-based polymers, Materials 13 (16), 3615, https://doi.org/10.3390/ma13163615, (2020).
  27. Peltola H., Pääkkönen E., Jetsu P., Heinemann S., Wood based PLA and PP composites: effect of fibre type and matrix polymer on fibre morphology, dispersion and composite properties, Compos. A: Appl. Sci. Manuf. 61, 13-22, http://dx.doi.org/10.1016/j.compositesa.2014.02.002, (2014).
  28. Singh G., Replace wooden pattern to polymer pattern by 3D printing, Department of Mechatronics Engineering, Chandigarh University, Ghauran Mohali-140413 Punjab, India, august 2020, https://doi.org/10.1016/j.matpr.2020.08.284.
  29. Sobczak L., Lang R.W., Haider A., Polypropylene composites with natural fibers and wood – general mechanical property profiles, Compos. Sci. Technol. 72, 550-557, http://dx.doi.org/10.1016/j.compscitech.2011.12.013 (2012).
  30. https://www.pcbway.com/rapid-prototyping/3d-printing/ Accessed on 04.10.2022.
  31. https://sim.tuiasi.ro/wp-content/uploads/2018/05/Infografica-In-imprimarea-3D.pdf - Accessed on 09.08.2022.
  32. http://www.trosol.com/fortus/WPGrimm.pdf Accesat 10.01.2022 - FUSED DEPOSITION MODELLING: A TECHNOLOGY EVALUATION.
  33. http://creativecommons.org/licenses/by/3.0, Accessed on 01.09.2022. Wikipedia, Composite material [Internet]., 2012, Available from: https://en.wikipedia.org/wiki/Composite_material, Accessed on 08.12.2022.
  34. www.blog.3ddot.ro/introducere-in-fdm/, Acessed on14.08.2022.
DOI: https://doi.org/10.2478/bipcm-2023-0006 | Journal eISSN: 2537-4869 | Journal ISSN: 1011-2855
Language: English
Page range: 81 - 94
Submitted on: Apr 5, 2023
Accepted on: May 20, 2023
Published on: Jul 22, 2023
Published by: Gheorghe Asachi Technical University of Iasi
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Mihaela Feraru Ilie, published by Gheorghe Asachi Technical University of Iasi
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.