Burkhardt C., Freigassner P., Weber O., Imgrund P., Hampel S., Fused Filament Fabrication (FFF ) of 316 L Green Parts for the MIM process, Materials Science (2018).
Cabrini M., Carrozza A., Lorenzi S., Pastore T., Testa C., Manfredi D., Fino P., Scenini F., Influence of surface finishing and heat treatments on the corrosion resistance of LPBF-produced Ti-6Al-4V alloy for biomedical applications, Journal of Materials Processing Technology, 308, 117730, https://doi.org/10.1016/J.JMATPROTEC.2022.117730 (2022).
Carrozza A., Lorenzi S., Carugo F., Fest-Santini S., Santini M., Marchese G., Barbieri G., Cognini F., Cabrini M., Pastore T., A comparative analysis between material extrusion and other additive manufacturing techniques: Defects, microstructure and corrosion behavior in nickel alloy 625, Materials & Design, 225, 111545, https://doi.org/10.1016/J.MATDES.2022.111545 (2023).
Dass A., Moridi A., State of the Art in Directed Energy Deposition: From Additive Manufacturing to Materials Design, Coatings 2019, Vol. 9, Page 418, 9(7), 418, https://doi.org/10.3390/COATINGS9070418 (2019).
Dehghan-Manshadi A., Bermingham M.J., Dargusch M.S., StJohn D.H., Qian M., Metal injection moulding of titanium and titanium alloys: Challenges and recent development, Powder Technology, 319, 289-301, https://doi.org/10.1016/J.POWTEC.2017.06.053 (2017).
de Leon Nope G., Wang G., Alvarado-Orozco J.M., Gleeson B., Role of Elemental Segregation on the Oxidation Behavior of Additively Manufactured Alloy 625, JOM, 74(4), 1698-1706, https://doi.org/10.1007/S11837-022-05200-8/METRICS (2022).
García C., Martín F., Herranz G., Berges C., Romero A., Effect of adding carbides on dry sliding wear behaviour of steel matrix composites processed by metal injection moulding, Wear, 414–415, 182-193, https://doi.org/10.1016/j.wear.2018.08.010 (2018).
Gill, S. S., Singh, J., Singh, R., & Singh, H. (2011), Metallurgical principles of cryogenically treated tool steels - A review on the current state of science, International Journal of Advanced Manufacturing Technology, 54(1–4), 59–82. https://doi.org/10.1007/s00170-010-2935-5
Gloeckle C., Konkol T., Jacobs O., Limberg W., Ebel T., Handge U.A., Processing of Highly Filled Polymer–Metal Feedstocks for Fused Filament Fabrication and the Production of Metallic Implants, Materials, 13(19), 4413, https://doi.org/10.3390/ma13194413 (2020).
Godec D., Cano S., Holzer C., Gonzalez-Gutierrez J., Optimization of the 3D Printing Parameters for Tensile Properties of Specimens Produced by Fused Filament Fabrication of 17-4PH Stainless Steel, Materials 2020, Vol. 13, Page 774, 13(3), 774, https://doi.org/10.3390/MA13030774 (2020).
Gonzalez-Gutierrez J., Cano S., Schuschnigg S., Kukla C., Sapkota J., Holzer C., Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: A review and future perspectives, Materials 11(5). MDPI AG, https://doi.org/10.3390/ma11050840 (2018).
Gonzalez-Gutierrez J., Godec D., Kukla C., Schlauf T., Burkhardt C., Holzer C., Shaping, debinding and sintering of steel components via fused filament fabrication, CIM 2017 Computer Integrated Manufacturing and High Speed Machining, Proceedings of the 16th International Scientific Conference on Production Engineering, 99-104 (2017).
González-Gutiérrez J., Stringari G.B., Emri I., González-Gutiérrez J., Stringari G.B., Emri I., Powder Injection Molding of Metal and Ceramic Parts, Some Critical Issues for Injection Molding, 65-86, https://doi.org/10.5772/38070 (2012),
Hamidi M.F.F.A., Harun W.S.W., Samykano M., Ghani S.A.C., Ghazalli Z., Ahmad F., Sulong A.B., A review of biocompatible metal injection moulding process parameters for biomedical applications, Materials Science and Engineering: C, 78, 1263-1276, https://doi.org/10.1016/J.MSEC.2017.05.016 (2017).
Herranz G., Levenfeld B., Várez A., Effect of Residual Carbon on the Microstructure Evolution during the Sintering of M2 HSS Parts Shaping by Metal Injection Moulding Process, Materials Science Forum, 534-536, 353-356, https://doi.org/10.4028/www.scientific.net/msf.534-536.353 (2007).
Karmuhilan M., Kumanan S., A Review on Additive Manufacturing Processes of Inconel 625, Journal of Materials Engineering and Performance, 31(4), 2583-2592, https://doi.org/10.1007/S11665-021-06427-3/TABLES/5 (2022).
Kearns M., A review of the sintering behaviour of selected tool steels processed by MIM, Powder Injection Moulding International, 12(3), 89-98, www.pim-international.com (2018).
Lu Z., Ayeni O.I., Yang X., Park H.Y., Jung Y.G., Zhang J., Microstructure and Phase Analysis of 3D-Printed Components Using Bronze Metal Filament, Journal of Materials Engineering and Performance, 29(3), 1650-1656, https://doi.org/10.1007/S11665-020-04697-X/METRICS (2020).
Marchese G., Parizia S., Rashidi M., Saboori A., Manfredi D., Ugues D., Lombardi M., Hryha E., Biamino S., The role of texturing and microstructure evolution on the tensile behavior of heat-treated Inconel 625 produced via laser powder bed fusion, Materials Science and Engineering: A, 769, 138500, https://doi.org/10.1016/J.MSEA.2019.138500 (2020).
Myers N.S., Heaney D.F., Metal injection molding (MIM) of high-speed tool steels, Handbook of Metal Injection Molding, Elsevier, pp. 525-534, https://doi.org/10.1016/B978-0-08-102152-1.00026-X (2019).
Naranjo J.A., Berges C., Gallego A., Herranz G., A novel printable high-speed steel filament: Towards the solution for wear-resistant customized tools by AM alternative, Journal of Materials Research and Technology, 11, 1534-1547, https://doi.org/10.1016/J.JMRT.2021.02.001 (2021).
Poulin J.R., Kreitcberg A., Terriault P., Brailovski V., Long fatigue crack propagation behavior of laser powder bed-fused inconel 625 with intentionally-seeded porosity, International Journal of Fatigue, 127, 144-156, https://doi.org/10.1016/J.IJFATIGUE.2019.06.008 (2019).
Riaz A., Töllner P., Ahrend A., Springer A., Milkereit B., Seitz H., Optimization of composite extrusion modeling process parameters for 3D printing of low-alloy steel AISI 8740 using metal injection moulding feedstock, Materials & Design, 219, 110814, https://doi.org/10.1016/J.MATDES.2022.110814 (2022).
Shahrubudin N., Lee T.C., Ramlan R., An Overview on 3D Printing Technology: Technological, Materials, and Applications, Procedia Manufacturing, 35, 1286-1296, https://doi.org/10.1016/J.PROMFG.2019.06.089 (2019).
Spoerk M., Arbeiter F., Cajner H., Sapkota J., Holzer C., Parametric optimization of intra- and inter-layer strengths in parts produced by extrusion-based additive manufacturing of poly(lactic acid), Journal of Applied Polymer Science, 134(41), https://doi.org/10.1002/app.45401 (2017).
Spoerk M., Gonzalez-Gutierrez J., Sapkota J., Schuschnigg S., Holzer C., Effect of the printing bed temperature on the adhesion of parts produced by fused filament fabrication, Plastics, Rubber and Composites, 47(1), 17-24, https://doi.org/10.1080/14658011.2017.1399531 (2018).
Thomas D., Gleadall A., Advanced metal transfer additive manufacturing of high temperature turbine blades, International Journal of Advanced Manufacturing Technology, 120(9–10), 6325-6335, https://doi.org/10.1007/S00170-022-09176-2/METRICS (2022).
Thompson Y., Zissel K., Förner A., Gonzalez-Gutierrez J., Kukla C., Neumeier S., Felfer P., Metal fused filament fabrication of the nickel-base superalloy IN 718, Journal of Materials Science, 57(21), 9541-9555, https://doi.org/10.1007/S10853-022-06937-Y/FIGURES/8 (2022).