Have a personal or library account? Click to login
Aspects Concerning the Use of Magnetoreological Fluids in Construction of Shock Absorbers Cover

Aspects Concerning the Use of Magnetoreological Fluids in Construction of Shock Absorbers

Open Access
|Feb 2022

References

  1. Ahmadian M., Song X., Sandu C., Designing an Adaptive Semiactive Magneto-Rheological Seat Suspension for Heavy Truck Applications, In: Proceedings of SPIE-International Society for Optics Engineering: Smart Structures and Materials 2005: Damping and Isolation, San Diego, CA, 7-10 March, 247-256.10.1117/12.600485
  2. Ashour O., Rogers CA., Kordonsky W., Magnetorheological Fluid: Materials, Characterization and Devices, J. Intell. Mater. Sys. And Struct., 7, 123 (1996).
  3. Avraam M., MR-Fluid Brake Design and its Application to a Portable Muscular Rehabilitation Device, DoktoraTezi, 2009, Faculte´ De Sciences Applique´es, Universite´ Libre De Bruxelles, Bruxelles.
  4. Carlson J.D., Weiss K.D., Magnetorheological Materials Based on Alloy Particles, US Patent 5, 382, 373-1995.
  5. Carlson J.D., Jolly M.R., MR Fluid, Foam and Elastomer Devices, Mechatronics, 2000, 10, 555-569.10.1016/S0957-4158(99)00064-1
  6. Chae H.D., Choi S.-B., A New Vibration Isolation Bed Stage with Magnetorheological Dampers for Ambulance Vehicles, Smart Materials and Structures, 24, 017001 (2014).10.1088/0964-1726/24/1/017001
  7. Dewi U.U., Saiful A.M., Fitrian I., Nur A.N., Irfan B., Siti A.A.A., Norzilawati M., Seung-Bok C., Material Characterization of a Magnetorheological Fluid Subjected to Long-Term Operation in Damper, Materials, 11, 2195, 2-17 (2018).
  8. Dutta S., Choi S.-B., A Nonlinear Kinematic and Dynamic Modeling of Macpherson Suspension Systems with a Magneto-Rheological Damper, Smart Materials and Structures, 2016, 25, 035003.10.1088/0964-1726/25/3/035003
  9. Fujitani H., Sodeyama H., Tomura T., Hiwatashi T., Shiozakt Y., Hata K., Sunakoda K., Morishita S., Soda S., Development of 400kN Magnetorheological Damper for a Real Base-Isolated Building, In: Proceedings of SPIE-International Society for Optics Engineering: Smart Structures and materials 2003: Damping and Isolation, San Diego, CA, 2-6 March, 265-276.10.1117/12.483810
  10. Genc S., Synthesis and Properties of Magnetorheological (MR) Fluids, PhD Dissertation, University of Pittsburgh, 2002.
  11. Goncalves F.D., Characterizing the Behavior of Magne-Torheological Fluids at High Velocities and High Shear Rates, PhD Thesis, Virginia Polytechnic, Blacksburg, 2005.10.1142/9789812702197_0061
  12. Hahm D., Ok S.-Y., Park W., Koh H.-M., Park K.-S., Cost-Effectiveness Evaluation of an MR Damper System Based on a Life-Cycle Cost Concept, KSCE Journal of Civil Engineering, 17, 145-154 (2013).
  13. Hajalilou A., Mazlan S.A., Lavvafi H., Shameli K., Magnetorheological Fluid Applications, In: Hajalilou A., Mazlan S.A., Lavvafi H. et al. (Eds.) Field Responsive Fluids as Smart Materials, Singapore, Springer, 2016, 67-81.10.1007/978-981-10-2495-5_5
  14. Hiemenz G.J., Hu W., Wereley N.M., Semi-Active Magnetorheological Helicopter Crew Seat Suspension for Vibration Isolation, Journal of Aircraft, 45, 945-953 (2008).
  15. Jim Toscano J.K., Improving Operator Comfort, 2009a, Available at: http://articles.sae.org/6727/.
  16. Jim Toscano J.K., SAE Off-Highway Engineering, 2009b, Available at: http://articles.sae.org/6727/.
  17. Jolly M.R., Properties and Applications of Magnetorheological Fluids, Vol. 604 (Symposium LL – Materials for SmartSystems III) 167 (1999), DOI: https://doi.org/10.1557/PROC-604-167.10.1557/PROC-604-167
  18. Jolly M.R., Bender J.W., Carlson J.D., Properties and Applications of Commercial Magnetorheological Fluids, In: 5th Annual International Symposium on Smart Structures and Materials, San Diego, CA, 1998, 1–5 March, 262-275.10.1117/12.310690
  19. Kim H.-C., Shin Y.-J., You W., Jung K.C., Oh J.-S., Choi S.-B., A Ride Quality Evaluation of a Semi-Active Railway Vehicle Suspension System with MR Damper: Railway Field Tests, Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 231, 306-316 (2016).
  20. Kormann Cl., Laun M., Klett G., Actuator, 4th International Conference on New Actuators, H. Borgmannn and K. Lenz (Eds.), Germany: Axon Technologie Consult GmbH, 1994, 271.
  21. Melle S., Fuller G.G., Rubio M.A., Structure and Dynamics of Magnetorheological Fluids in Rotating Magnetic Fields, Physical Review E., 2000, 61, 4111.
  22. Naserimojarad M.M., Moallem M., Arzanpour S., Smart Fluid Damper, CA2984533 (A1) - 2019-05-01.
  23. Olabi A.-G., Grunwald A., Design and Application of Magneto-Rheological Fluid, Materials & Design, 28, 2658-2664 (2007).
  24. Rabinow J., AIEE Trans., National Bureau of Standards Technical News Bulletin, 1948.
  25. Raju A., Seung-Bok C., MdMeftahul F., A State of Art on Magneto-Rheological Materials and their Potential Applications, Journal of Intelligent material Systems and structures, 1-45 (2018), DOI: 10.1177/1045389X18754350.10.1177/1045389X18754350
  26. Shtarkman E. M., Fluid Responsive to a Magnetic Field, US Patent 4, 992, 190-1991.
  27. Shtarkman E.M., Fluid Responsive to a Magnetic Field, US Patent 5, 167, 850-1992.
  28. Shutto S., Toscano J.R. Magnetorheological (MR) Fluid and its Applications, In: Proceedings of the JFPS International Symposium on Fluid Power, TSUKUBA, 7–10 November 2005, 590-594, The Japan Fluid Power System Society.10.5739/isfp.2005.590
  29. Skalski P., Kalita K., Role of Magnetorheological Fluids and Elastomers in Today’s World, Actamechanica et Automatica, 2017, 11, 4, 267-274.10.1515/ama-2017-0041
  30. Spaggiari A., Properties and Applications of Magnetorheological Fluids, Frattura Ed. Integrità Strutturale, 2013, 23, 57-61.10.3221/IGF-ESIS.23.06
  31. Stănescu C., Luca P.I., Boiangiu V., Florescu D., Balliu S., Florea F., Lubricant Composition, RO116558 (B1) - 2001-03-30.
  32. Sun S.S., Ning D.H., Yang J., Du H., Zhang S.W., Li W.H., A Seat Suspension with a Rotary Magnetorheological Damper for Heavy Duty Vehicles, Smart Materials and Structures, 25, 105032 (2016).10.1088/0964-1726/25/10/105032
  33. Tang X., Zhang X., Tao R., Rong Y., Structure-Enhanced Yield Stress of Magnetorheological Fluids, Journal of Applied Physics, 87, 2634-2638 (2000).
  34. Tian Li, Zhou Mengyao, Chen Cheng, Gao Guodong, Rotation Type Self-Adaption Magnetorheological Fluid Damper, CN 108869614(A)-2018-11-23.
  35. Tian T., Li W., Alici G., Du H.., Deng Y.M., Microstructure and Magnetorheology of Graphite-Based MR Elastomers, Rheologica Acta, 50, 825-836 (2011).
  36. Truong D.Q., Ahn K.K., MR Fluid Damper and Its Application to Force Sensorless Damping Control System. Smart Actuation and Sensing Systems – Recent Advances and Future Challenges, Ed. InTechOpen, 2012, Chapter 15, 383-424 http://dx.doi.org/10.5772/51391.10.5772/51391
  37. Vidican I., Mureşan R., Bejan M., Considerații despre amortizoarele magnetoreologice la vehiculele feroviare, A XIII-a Conferinţă Naţională multidisciplinară-cu participare internaţională, „Profesorul Dorin Pavel-fondatorul hidroenergeticii româneşti”, Sebeş, 2013.
  38. Wang D., Wang B., Zi B., Qian S., Wang Z., Qian J., Chen B., Luo Y., Automobile Brake Pedal Feeling Simulator Based on Magnetorheological Damper. CN109278728 (A) - 2019-01-21.
  39. Wang D., Zi B., Zeng Y., Qian S., Simulation and Experiment on Transient Temperature Field of a Magnetorheological Clutch for Vehicle Application, Smart Materials and Structures, 26, 095020 (2017).10.1088/1361-665X/aa771c
  40. Wang J., Meng G., Magnetorheological Fluid Devices: Principles, Characteristics and Applications in Mechanical Engineering, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials Design and Applications, 215, 165-174 (2001).
  41. Winslow W.M., Induced Fibration of Suspensions, J. Appl. Phys. 20, 1137-1140 (1949).
  42. Yabin L., Weifeng M., Qi L., Shijun L., Yanwei C., Shuguo P., Yang H., Magnetorheological Damper and Magnetorheological Fluid Perfusion Method. CN108980260 (A) - 2018-12-11.
  43. Yang S.-Y., Do X.P., Choi S.-B., Design of magnetorheological mount for a cabin of heavy equipment vehicles, In: SPIE-International Society for Optics Engineering: Smart Structures and Materials + Non Destructive Evaluation and Health Monitoring, Las Vegas, NV, 2016, 20–24 March, 9799, 97992S.10.1117/12.2218678
  44. Yu M., Dong X., Choi S.B., Liao C.R., Human Simulated Intelligent Control of Vehicle Suspension System with MR Dampers, Journal of Sound and Vibration, 319, 753-767, (2009).10.1016/j.jsv.2008.06.047
  45. Zapateiro M., Karimi H.R., Luo N., Spencer B.F., Frequency Domain Control Based on Quantitative Feedback Theory for Vibration Suppression in Structures Equipped with Magnetorheological Dampers, Smart Materials and Structures, 18, 095041 (2009).10.1088/0964-1726/18/9/095041
  46. *** Lord Corporation (n.d.-a), Industrial V. 2003 Available at: http://www.lord.http://www.lord.com/products-and-solutions/active-vibration-control/industrial-suspensionsystems.
  47. https://patents.google.com/
  48. https://ro.espacenet.com/
DOI: https://doi.org/10.2478/bipcm-2021-0009 | Journal eISSN: 2537-4869 | Journal ISSN: 1011-2855
Language: English
Page range: 17 - 30
Submitted on: Mar 29, 2021
Accepted on: May 28, 2021
Published on: Feb 23, 2022
Published by: Gheorghe Asachi Technical University of Iasi
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2022 Corneliu-Daniel Ghiorghe, Doru Călăraşu, published by Gheorghe Asachi Technical University of Iasi
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.