Have a personal or library account? Click to login
Study on the Factors Affecting in Situ Measurement of the Thermal Resistance of Building Elements Cover

Study on the Factors Affecting in Situ Measurement of the Thermal Resistance of Building Elements

Open Access
|Jun 2023

References

  1. Ahmad A., Maslehuddin M., Al-Hadhrami L.M., In situ measurement of thermal transmittance and thermal resistance of hollow reinforced precast concrete walls, Energ. Buildings 84, 132-141 (2014).
  2. Albatici R., Tonelli A.M., Infrared thermovision technique for the assessment of thermal transmittance value of opaque building elements on site, Energ. Buildings 42, 2177-2183 (2010).
  3. Asdrubali F., Baldinelli G., Bianchi F., Vera Collado B., Tanner Ch., A quantitative methodology to evaluate thermal bridges in buildings, Appl. Energy. 97, 365-373 (2012).
  4. Barreira E., de Freitas V.P., Evaluation of building materials using infrared thermography, Constr. Build Mater. 21, 218-224 (2007).
  5. Ficco G., Iannetta F., Ianniello E., Romano d’Ambrosio F., Dell’Isola M., U-value in situ measurement for energy diagnosis of existing buildings, Energ. Buildings 104, 108-121 (2015).
  6. Fokaides P.A., Kalogirou S.A., Application of infrared thermography for the determination of the overall heat transfer coefficient (U-Value) in building envelopes, Appl. Energy. 88, 4358-4365 (2011).
  7. Gaspar K., Casals M., Gangolells M., In situ measurement of façades with a low U-value: Avoiding deviations, Energ. Buildings 170, 61-73 (2018).
  8. Lehmann B., Ghazi Wakili K., Frank Th., Vera Collado B., Tanner Ch., Effects of individual climatic parameters on the infrared thermography of buildings, Appl. Energy. 110, 29-43 (2013).
  9. Litti G., Khoshdel S., Audenaert A., Braet J., Hygrothermal performance evaluation of traditional brick masonry in historic buildings, Energ. Buildings 105, 393-411 (2015).
  10. Meng X., Gao Y., Wang Y., Yan B., Zhang W., Long E., Feasibility experiment on the simple hot box-heat flow meter method and the optimization based on simulation reproduction, Appl. Therm. Eng. 83, 48-56 (2015).
  11. Meng X., Yan B., Gao Y., Wang J., Zhang W., Long E., Factors affecting the in situ measurement accuracy of the wall heat transfer coefficient using the heat flow meter method, Energ. Buildings 86, 754-756 (2015).
  12. Rasooli A., Itard L., Ferreira C.I., A response factor-based method for the rapid in-situ determination of wall’s thermal resistance in existing buildings, Energ. Buildings 119, 51-61 (2016).
  13. Teni M., Krstic H., Kosinski P., Review and comparison of current experimental approaches for in-situ measurements of building walls thermal transmittance, Energ. Buildings 203, 109417 (2019).
  14. *** ISO 9869-1:2014, “Thermal insulation – building elements – in-situ measurement of thermal resistance and thermal transmittance – Part 1: heat flow meter method”.
  15. *** ISO 9869-2:2018 “Thermal insulation – Building elements – In-situ measurement of thermal resistance and thermal transmittance – Part 2: Infrared method for frame structure dwelling”.
DOI: https://doi.org/10.2478/bipca-2021-0036 | Journal eISSN: 2068-4762 | Journal ISSN: 1224-3884
Language: English
Page range: 87 - 94
Submitted on: Oct 3, 2022
Accepted on: Feb 22, 2023
Published on: Jun 9, 2023
Published by: Gheorghe Asachi Technical University of Iasi
In partnership with: Paradigm Publishing Services
Publication frequency: 4 issues per year

© 2023 Sergiu George Petre, Dorina Nicolina Isopescu, Marian Pruteanu, published by Gheorghe Asachi Technical University of Iasi
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.