References
- Akalpler E., Musa E. S., Statistical reasoning the link between energy demand, CO2 emissions and growth: Evidence from China, Procedia Computer Science, 120, 182–188, (2017).
- Belz K., Kuznik F., Werner K. F., Schmidt T., Ruck W. K. L., Thermal energy storage systems for heating and hot water in residential buildings, In Advances in Thermal Energy Storage Systems, by Luisa F. Cabeza, 441-465, (2015). Woodhead Publishing Series in Energy.10.1533/9781782420965.4.441
- Cambeiro F. P., Julia A., Guillermo B., Juan I. P. L., Faustino P. B., Economic appraisal of energy efficiency renovations in tertiary buildings, Sustainable Cities and Society, 47, 101503, (2019).10.1016/j.scs.2019.101503
- Cao X., Xilei D., Junjie L., Building energy-consumption status worldwide and the state-of-the-art technologies for zero-energy buildings during the past decade, Energy and Buildings, 128, 198–213, (2016).10.1016/j.enbuild.2016.06.089
- Cunha S. R. L., José L. B. A., Phase change materials and energy efficiency of buildings: A review of knowledge, Journal of Energy Storage, 27, 101083, (2020)
- Devaux P., Mohammed M. F., Benefits of PCM underfloor heating with PCM wallboards for space heating in winter, Applied Energy, 191, 593–602, (2017)10.1016/j.apenergy.2017.01.060
- Faraj K., Jalal F., Farouk H., Hassan B., Mahmoud K., Cathy C., Analysis of underfloor electrical heating system integrated with coconut oil-PCM plates, Applied Thermal Engineering, 158, 113778, (2019)10.1016/j.applthermaleng.2019.113778
- Fotis P., Sotiris K., Dimitrios A., The relationship between energy demand and real GDP growth rate: The role of price asymmetries and spatial externalities within 34 countries across the globe, Energy Economics, 66, 69-84, (2017)
- Guarino F., Andreas A., Maurizio C., Diane B., PCM thermal storage design in buildings: Experimental studies and applications to solaria in cold climates, Applied Energy, 185, 95-106, (2017)
- Guo J., Yiqiang J., Yuan W., Bin Z., Thermal storage and thermal management properties of a novel ventilated mortar block integrated with phase change material for floor heating: an experimental study, Energy Conversion and Management, 205, 112288, (2020)
- Hu Y., Per K. H., A new ventilated window with PCM heat exchanger—Performance analysis and design optimization, Energy and Buildings, 169, 185-194, (2018)10.1016/j.enbuild.2018.03.060
- Kong X., Lu W., Han L., Guangpu Y., Chengqiang Y., Experimental study on a novel hybrid system of active composite PCM wall and solar thermal system for clean heating supply in winter, Solar Energy, 195, 259–270, (2020)10.1016/j.solener.2019.11.081
- Li S., Kaikai Z., Gaofeng S., Xiaosong Z., Simulation research on the dynamic thermal performance of a novel triple-glazed window filled with PCM, Sustainable Cities and Society, 40, 266-273 (2018)
- Lin Y., Yuting J., Guruprasad A., Guiyin F., Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage, Renewable and Sustainable Energy Reviews, 82 (3), 2730-2742, (2018)10.1016/j.rser.2017.10.002
- Lu S., Bowen X., Xiaolei T., Experimental study on double pipe PCM floor heating system under different operation strategies, Renewable Energy, 145, 1280-1291, (2020)10.1016/j.renene.2019.06.086
- Magendran S. S., Fahad S. A. K., Mubarak N. M., Mahesh V., Rashmi W., Mohammad K., Abdullah E. C., Sabzoi N., Rama R. K., Synthesis of organic phase change materials (PCM) for energy storage applications: A review, Nano-Structures & Nano-Objects, 20, 100399, (2019)
- Magendran S. S., Fahad S. A. K., Mubarak N. M., Mohammad K., Rashmi W., Abdullah E. C., Sabzoi N., Rama R. K., Synthesis of organic phase change materials by using carbon nanotubes as filler material, Nano-Structures & Nano-Objects, 19, 100361, (2019)10.1016/j.nanoso.2019.100361
- Mays A. E., Rami A., Hawa M., Mahamad A. A., Farouk H., Mahmoud K., Mohamad R., Using phase change material in under floor heating, Energy Procedia, 119, 806-811, (2017)10.1016/j.egypro.2017.07.101
- Rathore P. K. S., Shailendra K. S., Potential of macroencapsulated pcm for thermal energy storage in buildings: A comprehensive review, Construction and Building Materials, 225, 723–744, (2019)
- Wang H., Wei L., Zhigen W., Guanhua Z., Parametric analysis of applying PCM wallboards for energy saving in high-rise lightweight buildings in Shanghai, Renewable Energy, 145, 52-64, (2020)10.1016/j.renene.2019.05.124
- Weinläder H., Felix K., Modar Y., PCM cooling ceilings in the Energy Efficiency Center – Regeneration behaviour of two different system designs, Energy and Buildings, 156, 70-77, (2017)10.1016/j.enbuild.2017.09.010
- Yasin M., Eva S., Felix K., Helmut W., Stephan W., Generation of a simulation model for chilled PCM ceilings in TRNSYS and validation with real scale building data, Journal of Building Engineering, 22, 372-382, (2019)10.1016/j.jobe.2019.01.004
- Yun B. Y., Sungwoong Y., Hyun M. C., Seong J. C., Sumin K., Design and analysis of phase change material based floor heating system for thermal energy storage, Environmental Research, 173, 480-488, (2019)10.1016/j.envres.2019.03.04930986650