Have a personal or library account? Click to login

Assembly Theory Provides A Measure of Specified Complexity That Quantifies but does Not Explain Selection and Evolution

Open Access
|Oct 2025

References

  1. Sharma A, Czégel D, Lachmann M, Kempes CP, Walker SI, Cronin L. Assembly theory explains and quantifies selection and evolution. Nature. 2023;622(7982): 321–328. doi: 10.1038/s41586-023-06600-9
  2. Tirard S, Morange M, Lazcano A. The definition of life: a brief history of an elusive scientific endeavor. Astrobiology. 2010;10(10): 1003–1009. doi: 10.1089/ast.2010.0535
  3. Shannon CE. A mathematical theory of communication. The Bell System Technical Journal. 1948;27: 379–423. doi: 10.1002/j.1538-7305.1948.tb01338.x
  4. Walker SI. Life as no one knows it. New York, NY: Riverhead Books; 2024.
  5. Uthamacumaran A, Abrahão FS, Kiani NA, Zenil H. On the salient limitations of the methods of assembly theory and their classification of molecular biosignatures. NPJ Systems Biology and Applications. 2024;10(1): 82. doi: 10.1038/s41540-024-00403-y
  6. Abrahão FS, Hernández-Orozco S, Kiani NA, Tegnér J, Zenil H. Assembly theory is an approximation to algorithmic complexity based on LZ compression that does not explain selection or evolution. PLOS Complex Systems. 2024;1(1): e0000014. doi: 10.1371/journal.pcsy.0000014
  7. Mathis C. On the salient misunderstandings of assembly theory. 2022. Available from: https://colemathis.github.io/blog/2022-10-25-SalientMisunderstandings
  8. Dembski W. The design inference: eliminating chance through small probabilities, Cambridge studies in probability, induction and decision theory. Cambridge, England: Cambridge University Press; 1998. Available from: https://books.google.com/books?id=Zanic8M0PjgC
  9. Dembski W, Ewert W. The design inference: eliminating chance through small probabilities. Discovery Institute; 2023. Available from: https://books.google.com/books?id=kGsj0AEACAAJ
  10. Montañez, George D. A unified model of complex specified information. BIO-Complexity. 2018;2018(4). doi: 10.5048/bio-c.2018.4
  11. Marshall SM, Murray ARG, Cronin L. A probabilistic framework for identifying biosignatures using pathway complexity. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2017;375(2109): 20160342. doi: 10.1098/rsta.2016.0342
  12. Marshall SM, Moore DG, Murray ARG, Walker SI, Cronin L. Formalising the pathways to life using assembly spaces. Entropy (Basel, Switzerland). 2022;24(7): 884. doi: 10.3390/e24070884
  13. Zenil H. The 8 fallacies of assembly theory. 2022. Available from: https://hectorzenil.medium.com/the-8-fallacies-of-assembly-theory-ba54428b0b45
  14. Böttcher T. An additive definition of molecular complexity. Journal of Chemical Information and Modeling. 2016;56(3): 462–470. doi: 10.1021/acs.jcim.5b00723
  15. Böttcher T. From molecules to life: quantifying the complexity of chemical and biological systems in the universe. Journal of Molecular Evolution. 2018;86(1): 1–10. doi: 10.1007/s00239-017-9824-6
  16. Alon U. An introduction to systems biology: design principles of biological circuits. Boca Raton, Fla: Chapman and Hall/CRC; 2019. doi: 10.1201/9780429283321
  17. Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proceedings of the National Academy of Sciences. 1998;95(12): 6578–6583. doi: 10.1073/pnas.95.12.6578
  18. Giancarlo R, Scaturro D, Utro F. Textual data compression in computational biology: a synopsis. Bioinformatics (Oxford, England). 2009;25(13): 1575–1586. doi: 10.1093/bioinformatics/btp117
  19. Schmitt AO, Herzel H. Estimating the entropy of DNA sequences. Journal of Theoretical Biology. 1997;188(3): 369–377. doi: 10.1006/jtbi.1997.0493
  20. Adjeroh D, Nan F. On compressibility of protein sequences. In: Proceedings of the Data Compression Conference (DCC’06), March 2006, Snowbird, Utah, USA; 2006.p.1–10.
  21. Zenil H, Hernández-Orozco S, Kiani N, Soler-Toscano F, Rueda-Toicen A, Tegnér J. A decomposition method for global evaluation of Shannon entropy and local estimations of algorithmic complexity. Entropy (Basel, Switzerland). 2018;20(8): 605. doi: 10.3390/e20080605
  22. Al-Fatlawi A, Menzel M, Schroeder M. Is protein BLAST a thing of the past? Nature Communications. 2023;14(1): 8195. doi: 10.1038/s41467-023-44082-5
  23. Tian P, Best RB. How many protein sequences fold to a given structure? A coevolutionary analysis. Biophysical Journal. 2017;113(8): 1719–1730. doi: 10.1016/j.bpj.2017.08.039
  24. Copley SD. Evolution of new enzymes by gene duplication and divergence. The FEBS Journal. 2020;287(7): 1262–1283. doi: 10.1111/febs.15299
  25. Glasner ME, Truong DP, Morse BC. How enzyme promiscuity and horizontal gene transfer contribute to metabolic innovation. The FEBS Journal. 2020;287(7): 1323–1342. doi: 10.1111/febs.15185
  26. Marshall SM, Mathis C, Carrick E, Keenan G, Cooper GJT, Graham H, et al. Identifying molecules as biosignatures with assembly theory and mass spectrometry. Nature Communications. 2021;12(1): 3033. doi: 10.1038/s41467-021-23258-x
  27. Jirasek M, Sharma A, Bame JR, Mehr SHM, Bell N, Marshall SM, et al. Investigating and quantifying molecular complexity using assembly theory and spectroscopy. ACS Central Science. 2024;10(5): 1054–1064. doi: 10.1021/acscentsci.4c00120
  28. Liu Y, Mathis C, Bajczyk MD, Marshall SM, Wilbraham L, Cronin L. Exploring and mapping chemical space with molecular assembly trees. Science Advances. 2021;7(39): eabj2465. doi: 10.1126/sciadv.abj2465
  29. EurekAlert A. New “assembly theory” unifies physics and biology to explain evolution and complexity. 2023. Available from: https://www.eurekalert.org/news-releases/1003613 [Accessed 14th October 2025].
  30. Papkou A, Garcia-Pastor L, Escudero JA, Wagner A. A rugged yet easily navigable fitness landscape. Science (New York, N.Y.). 2023;382(6673): eadh3860. doi: 10.1126/science.adh3860
  31. Lewontin RC. The units of selection. Annual Review of Ecology and Systematics. 1970;1(1): 1–18. doi: 10.1146/annurev.es.01.110170.000245
  32. Cronin L, Tour J. Dr. Lee Cronin vs Dr. James Tour debate the origin of life at Harvard Cambridge Faculty Roundtable. 2023. Available from: https://www.youtube.com/watch?v=6GDv4f2zUus
  33. Benner SA. Paradoxes in the origin of life. Origins of Life and Evolution of Biospheres. 2014;44(4): 339–343. doi: 10.1007/s11084-014-9379-0
  34. Fry I. The role of natural selection in the origin of life. Origins of Life and Evolution of Biospheres. 2010;41(1): 3–16. doi: 10.1007/s11084-010-9214-1
  35. Freeland S. Undefining life’s biochemistry: implications for abiogenesis. Journal of The Royal Society Interface. 2022;19(187). doi: 10.1098/rsif.2021.0814
  36. Richert, Clemens. Prebiotic chemistry and human intervention. Nature Communications. 2018;9(1): ISSN: 2041-1723. doi: 10.1038/s41467-018-07219-5
  37. Bartlett JL. Measuring active information in biological systems. BIO-Complexity. 2020;2020(2). doi: 10.5048/BIO-C.2020.2
  38. Cronin L, Walker SI. Beyond prebiotic chemistry. Science (New York, N.Y.). 2016;352(6290): 1174–1175. doi: 10.1126/science.aaf6310
  39. Walker, Sara Imari and Davies, Paul C. W. The algorithmic origins of life. Journal of The Royal Society Interface. 2013;10(79): 20120869. doi: 10.1098/rsif.2012.0869
  40. Walker, Sara Imari and Davies, Paul C. W. The “Hard Problem” of Life. From Matter to Life, Cambridge University Press. 2017; 19–37. doi 10.1017/9781316584200.002
  41. Ellis GFR. Top-down causation and emergence: some comments on mechanisms. Interface Focus. 2012;2(1): 126–140. doi: 10.1098/rsfs.2011.0062
  42. Steiner S, Wolf J, Glatzel S, Andreou A, Granda JM, Keenan G, et al. Organic synthesis in a modular robotic system driven by a chemical programming language. Science (New York, N.Y.). 2019;363(6423): eaav2211. doi: 10.1126/science.aav2211
  43. Šiaučiulis M, Knittl-Frank C, Mehr SH, Clarke E, Cronin L. Reaction blueprints and logical control flow for parallelized chiral synthesis in the chemputer. Nature Communications. 2024;15(1): 10261. doi: 10.1038/s41467-024-54238-6
  44. Chalmers D. Facing up to the problem of consciousness. Journal of Consciousness Studies. 1995;2(3): 200–219. doi: 10.1093/acprof:oso/9780195311105.003.0001
  45. Meyer SC. Signature in the cell: DNA and the evidence for intelligent design. HarperOne; 2010.
  46. Voie OA. Biological function and the genetic code are interdependent. Chaos, Solitons and Fractals. 2006;28(4): 1000–1004. doi: 10.1016/j.chaos.2005.08.146
Language: English
Page range: 82 - 95
Published on: Oct 26, 2025
Published by: The Israel Biocomplexity Center
In partnership with: Paradigm Publishing Services
Publication frequency: 1 issue per year

© 2025 Onsi Joe Fakhouri, published by The Israel Biocomplexity Center
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.