Sharma A, Czégel D, Lachmann M, Kempes CP, Walker SI, Cronin L. Assembly theory explains and quantifies selection and evolution. Nature. 2023;622(7982): 321–328. doi: 10.1038/s41586-023-06600-9
Tirard S, Morange M, Lazcano A. The definition of life: a brief history of an elusive scientific endeavor. Astrobiology. 2010;10(10): 1003–1009. doi: 10.1089/ast.2010.0535
Uthamacumaran A, Abrahão FS, Kiani NA, Zenil H. On the salient limitations of the methods of assembly theory and their classification of molecular biosignatures. NPJ Systems Biology and Applications. 2024;10(1): 82. doi: 10.1038/s41540-024-00403-y
Abrahão FS, Hernández-Orozco S, Kiani NA, Tegnér J, Zenil H. Assembly theory is an approximation to algorithmic complexity based on LZ compression that does not explain selection or evolution. PLOS Complex Systems. 2024;1(1): e0000014. doi: 10.1371/journal.pcsy.0000014
Mathis C. On the salient misunderstandings of assembly theory. 2022. Available from: https://colemathis.github.io/blog/2022-10-25-SalientMisunderstandings
Dembski W. The design inference: eliminating chance through small probabilities, Cambridge studies in probability, induction and decision theory. Cambridge, England: Cambridge University Press; 1998. Available from: https://books.google.com/books?id=Zanic8M0PjgC
Dembski W, Ewert W. The design inference: eliminating chance through small probabilities. Discovery Institute; 2023. Available from: https://books.google.com/books?id=kGsj0AEACAAJ
Marshall SM, Murray ARG, Cronin L. A probabilistic framework for identifying biosignatures using pathway complexity. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2017;375(2109): 20160342. doi: 10.1098/rsta.2016.0342
Marshall SM, Moore DG, Murray ARG, Walker SI, Cronin L. Formalising the pathways to life using assembly spaces. Entropy (Basel, Switzerland). 2022;24(7): 884. doi: 10.3390/e24070884
Böttcher T. An additive definition of molecular complexity. Journal of Chemical Information and Modeling. 2016;56(3): 462–470. doi: 10.1021/acs.jcim.5b00723
Böttcher T. From molecules to life: quantifying the complexity of chemical and biological systems in the universe. Journal of Molecular Evolution. 2018;86(1): 1–10. doi: 10.1007/s00239-017-9824-6
Alon U. An introduction to systems biology: design principles of biological circuits. Boca Raton, Fla: Chapman and Hall/CRC; 2019. doi: 10.1201/9780429283321
Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proceedings of the National Academy of Sciences. 1998;95(12): 6578–6583. doi: 10.1073/pnas.95.12.6578
Adjeroh D, Nan F. On compressibility of protein sequences. In: Proceedings of the Data Compression Conference (DCC’06), March 2006, Snowbird, Utah, USA; 2006.p.1–10.
Zenil H, Hernández-Orozco S, Kiani N, Soler-Toscano F, Rueda-Toicen A, Tegnér J. A decomposition method for global evaluation of Shannon entropy and local estimations of algorithmic complexity. Entropy (Basel, Switzerland). 2018;20(8): 605. doi: 10.3390/e20080605
Tian P, Best RB. How many protein sequences fold to a given structure? A coevolutionary analysis. Biophysical Journal. 2017;113(8): 1719–1730. doi: 10.1016/j.bpj.2017.08.039
Glasner ME, Truong DP, Morse BC. How enzyme promiscuity and horizontal gene transfer contribute to metabolic innovation. The FEBS Journal. 2020;287(7): 1323–1342. doi: 10.1111/febs.15185
Marshall SM, Mathis C, Carrick E, Keenan G, Cooper GJT, Graham H, et al. Identifying molecules as biosignatures with assembly theory and mass spectrometry. Nature Communications. 2021;12(1): 3033. doi: 10.1038/s41467-021-23258-x
Jirasek M, Sharma A, Bame JR, Mehr SHM, Bell N, Marshall SM, et al. Investigating and quantifying molecular complexity using assembly theory and spectroscopy. ACS Central Science. 2024;10(5): 1054–1064. doi: 10.1021/acscentsci.4c00120
Liu Y, Mathis C, Bajczyk MD, Marshall SM, Wilbraham L, Cronin L. Exploring and mapping chemical space with molecular assembly trees. Science Advances. 2021;7(39): eabj2465. doi: 10.1126/sciadv.abj2465
EurekAlert A. New “assembly theory” unifies physics and biology to explain evolution and complexity. 2023. Available from: https://www.eurekalert.org/news-releases/1003613 [Accessed 14th October 2025].
Papkou A, Garcia-Pastor L, Escudero JA, Wagner A. A rugged yet easily navigable fitness landscape. Science (New York, N.Y.). 2023;382(6673): eadh3860. doi: 10.1126/science.adh3860
Cronin L, Tour J. Dr. Lee Cronin vs Dr. James Tour debate the origin of life at Harvard Cambridge Faculty Roundtable. 2023. Available from: https://www.youtube.com/watch?v=6GDv4f2zUus
Fry I. The role of natural selection in the origin of life. Origins of Life and Evolution of Biospheres. 2010;41(1): 3–16. doi: 10.1007/s11084-010-9214-1
Freeland S. Undefining life’s biochemistry: implications for abiogenesis. Journal of The Royal Society Interface. 2022;19(187). doi: 10.1098/rsif.2021.0814
Walker, Sara Imari and Davies, Paul C. W. The algorithmic origins of life. Journal of The Royal Society Interface. 2013;10(79): 20120869. doi: 10.1098/rsif.2012.0869
Walker, Sara Imari and Davies, Paul C. W. The “Hard Problem” of Life. From Matter to Life, Cambridge University Press. 2017; 19–37. doi 10.1017/9781316584200.002
Steiner S, Wolf J, Glatzel S, Andreou A, Granda JM, Keenan G, et al. Organic synthesis in a modular robotic system driven by a chemical programming language. Science (New York, N.Y.). 2019;363(6423): eaav2211. doi: 10.1126/science.aav2211
Šiaučiulis M, Knittl-Frank C, Mehr SH, Clarke E, Cronin L. Reaction blueprints and logical control flow for parallelized chiral synthesis in the chemputer. Nature Communications. 2024;15(1): 10261. doi: 10.1038/s41467-024-54238-6
Voie OA. Biological function and the genetic code are interdependent. Chaos, Solitons and Fractals. 2006;28(4): 1000–1004. doi: 10.1016/j.chaos.2005.08.146